首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1484篇
  免费   47篇
  国内免费   23篇
安全科学   61篇
废物处理   65篇
环保管理   321篇
综合类   124篇
基础理论   473篇
环境理论   4篇
污染及防治   297篇
评价与监测   106篇
社会与环境   83篇
灾害及防治   20篇
  2023年   11篇
  2022年   26篇
  2021年   33篇
  2020年   26篇
  2019年   30篇
  2018年   38篇
  2017年   51篇
  2016年   54篇
  2015年   51篇
  2014年   53篇
  2013年   128篇
  2012年   71篇
  2011年   120篇
  2010年   71篇
  2009年   87篇
  2008年   103篇
  2007年   94篇
  2006年   77篇
  2005年   56篇
  2004年   55篇
  2003年   51篇
  2002年   33篇
  2001年   15篇
  2000年   14篇
  1999年   19篇
  1998年   15篇
  1997年   14篇
  1996年   18篇
  1995年   13篇
  1994年   18篇
  1993年   13篇
  1992年   15篇
  1991年   8篇
  1990年   5篇
  1989年   8篇
  1988年   6篇
  1987年   3篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   6篇
  1982年   6篇
  1981年   6篇
  1980年   7篇
  1978年   4篇
  1976年   2篇
  1975年   3篇
  1973年   2篇
  1959年   1篇
  1957年   1篇
排序方式: 共有1554条查询结果,搜索用时 15 毫秒
91.
Although wetlands are known to be sinks for nitrogen (N) and phosphorus (P), their function in urban watersheds remains unclear. We analyzed water and nitrate (NO3?) and phosphate (PO43?) dynamics during precipitation events in two oxbow wetlands that were created during geomorphic stream restoration in Baltimore County, Maryland that varied in the nature and extent of connectivity to the adjacent stream. Oxbow 1 (Ox1) received 1.6‐4.2% and Oxbow 2 (Ox2) received 4.2‐7.4% of cumulative streamflow during storm events from subsurface seepage (Ox1) and surface flow (Ox2). The retention time of incoming stormwater ranged from 0.2 to 6.7 days in Ox1 and 1.8 to 4.3 days in Ox2. Retention rates in the wetlands ranged from 0.25 to 2.74 g N/m2/day in Ox1 and 0.29 to 1.94 g N/m2/day in Ox2. Percent retention of the NO3?‐N load that entered the wetlands during the storm events ranged from 64 to 87% and 23 to 26%, in Ox1 and Ox2, respectively. During all four storm events, Ox1 and Ox2 were a small net source of dissolved PO43? to the adjacent stream (i.e., more P exited than entered the wetland), releasing P at a rate of 0.23‐20.83 mg P/m2/day and 3.43‐24.84 mg P/m2/day, respectively. N and P removal efficiency of the oxbows were regulated by hydrologic connectivity, hydraulic loading, and retention time. Incidental oxbow wetlands have potential to receive urban stream and storm flow and to be significant N sinks, but they may be sources of P in urban watersheds.  相似文献   
92.
93.
We apply predictive weather metrics and land model sensitivities to improve the Colorado State University Water Irrigation Scheduler for Efficient Application (WISE). WISE is an irrigation decision aid that integrates environmental and user information for optimizing water use. Rainfall forecasts and verification performance metrics are used to estimate predictive rainfall probabilities that are used as input data within the irrigation decision aid. These input data errors are also used within a land model sensitivity study to diagnose important prognostic water movement behaviors for irrigation tool development purposes simultaneously performing the analysis in space and time. Thus, important questions such as “how long can a crop water application be delayed while maintaining crop yield production?” are addressed by evaluating crop growth stage interactions as a function of soil depth (i.e., space), rainfall events (i.e., time), and their probabilistic uncertainties. Editor’s note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   
94.
Pre-restoration studies typically focus on physical habitat, rather than the food-base that supports aquatic species. However, both food and habitat are necessary to support the species that habitat restoration is frequently aimed at recovering. Here we evaluate if and how the productivity of the food-base that supports fish production is impaired in a dredge-mined floodplain within the Yankee Fork Salmon River (YFSR), Idaho (USA); a site where past restoration has occurred and where more has been proposed to help recover anadromous salmonids. Utilizing an ecosystem approach, we found that the dredged segment had comparable terrestrial leaf and invertebrate inputs, aquatic primary producer biomass, and production of aquatic invertebrates relative to five reference floodplains. Thus, the food-base in the dredged segment did not necessarily appear impaired. On the other hand, we observed that off-channel aquatic habitats were frequently important to productivity in reference floodplains, and the connection of these habitats in the dredged segment via previous restoration increased invertebrate productivity by 58%. However, using a simple bioenergetic model, we estimated that the invertebrate food-base was at least 4× larger than present demand for food by fish in dredged and reference segments. In the context of salmon recovery efforts, this observation questions whether additional food-base productivity provided by further habitat restoration would be warranted in the YFSR. Together, our findings highlight the importance of studies that assess the aquatic food-base, and emphasize the need for more robust ecosystem models that evaluate factors potentially limiting fish populations that are the target of restoration.  相似文献   
95.
Can we develop land use policy that balances the conflicting views of stakeholders in a catchment while moving toward long term sustainability? Adaptive management provides a strategy for this whereby measures of catchment performance are compared against performance goals in order to progressively improve policy. However, the feedback loop of adaptive management is often slow and irreversible impacts may result before policy has been adapted. In contrast, integrated modelling of future land use policy provides rapid feedback and potentially improves the chance of avoiding unwanted collapse events. Replacing measures of catchment performance with modelled catchment performance has usually required the dynamic linking of many models, both biophysical and socio-economic—and this requires much effort in software development. As an alternative, we propose the use of variable environmental intensity (defined as the ratio of environmental impact over economic output) in a loose coupling of models to provide a sufficient level of integration while avoiding significant effort required for software development. This model construct was applied to the Motueka Catchment of New Zealand where several biophysical (riverine water quantity, sediment, E. coli faecal bacteria, trout numbers, nitrogen transport, marine productivity) models, a socio-economic (gross output, gross margin, job numbers) model, and an agent-based model were linked. An extreme set of land use scenarios (historic, present, and intensive) were applied to this modelling framework. Results suggest that the catchment is presently in a near optimal land use configuration that is unlikely to benefit from further intensification. This would quickly put stress on water quantity (at low flow) and water quality (E. coli). To date, this model evaluation is based on a theoretical test that explores the logical implications of intensification at an unlikely extreme in order to assess the implications of likely growth trajectories from present use. While this has largely been a desktop exercise, it would also be possible to use this framework to model and explore the biophysical and economic impacts of individual or collective catchment visions. We are currently investigating the use of the model in this type of application.  相似文献   
96.
97.
Key performance indicators (KPIs) are critical measures for determining the health of a manufacturing plant in relationship to the plant’s goals. In today’s competitive environment, manufacturers cannot be careless about their business; in fact, they must ensure that their KPIs are effective and use them to make improvements when necessary. This paper describes a method for suggesting improvements to a manufacturer’s KPIs, based on the results achieved from a workshop to score the KPI on a number of predefined criteria. The approach uses a prospect theory approach to weight the scoring. Different problem formulations were derived that allow for both recommendations for improvements and the recommendations for disinvestments to over-performing KPIs. The authors applied the developed approach to two workshop outputs, each from independent manufacturers, and the results highlighted the significant difference between the two manufacturers in terms of improvement priorities and KPI assessment. The optimal improvement suggestions were compared to those found through a fast heuristic. It was determined that given the underlying assumptions of the approach that the heuristic solutions were just as adequate as the optimal ones.  相似文献   
98.
The southeastern United States has undergone anthropogenic changes in landscape structure, with the potential to increase (e.g., urbanization) and decrease (e.g., reservoir construction) stream flashiness and flooding. Assessment of the outcome of such change can provide insight into the efficacy of current strategies and policies to manage water resources. We (1) examined trends in precipitation, floods, and stream flashiness and (2) assessed the relative influence of land cover and flow‐regulating features (e.g., best management practices and artificial water bodies) on stream flashiness from 1991 to 2013. We found mean annual precipitation decreased, which coincided with decreasing trends in floods. In contrast, stream flashiness, overall, showed an increasing trend during the period of study. However, upon closer examination, 20 watersheds showed stable stream flashiness, whereas 5 increased and 6 decreased in flashiness. Urban watersheds were among those that increased or decreased in flashiness. Watersheds that increased in stream flashiness gained more urban cover, lost more forested cover and had fewer best management practices installed than urban watersheds that decreased in stream flashiness. We found best management practices are more effective than artificial water bodies in regulating flashy floods. Flashiness index is a valuable and straightforward metric to characterize changes in streamflow and help to assess the efficacy of management interventions.  相似文献   
99.
Regional municipal water plans typically do not recognize complex coupling patterns or that increased withdrawals in one location can result in changes in water availability in others. We investigated the interaction between urban growth and water availability in the Baltimore metropolitan region where urban growth has occurred beyond the reaches of municipal water systems into areas that rely on wells in low‐productivity Piedmont aquifers. We used the urban growth model SLEUTH and the hydrologic model ParFlow.CLM to evaluate this interaction with urban growth scenarios in 2007 and 2030. We found decreasing groundwater availability outside of the municipal water service area. Within the municipal service area we found zones of increasing storage resulting from increased urban growth, where reduced vegetation cover dominated the effect of urbanization on the hydrologic cycle. We also found areas of decreasing storage, where expanding impervious surfaces played a larger role. Although the magnitude of urban growth and change in water availability for the simulation period were generally small, there was considerable spatial heterogeneity of changes in subsurface storage. This suggests that there are locally concentrated areas of groundwater sensitivity to urban growth where water shortages could occur or where drying up of headwater streams would be more likely. The simulation approach presented here could be used to identify early warning indicators of future risk.  相似文献   
100.
Romeis, J. Joshua, C. Rhett Jackson, L. Mark Risse, Andrew N. Sharpley, and David E. Radcliffe, 2011. Hydrologic and Phosphorus Export Behavior of Small Streams in Commercial Poultry‐Pasture Watersheds. Journal of the American Water Resources Association (JAWRA) 1‐19. DOI: 10.1111/j.1752‐1688.2011.00521.x Abstract: Few watershed‐scale studies have evaluated phosphorus export in streamflow from commercial poultry‐pasture operations. Continuous streamflow and mixed‐frequency water quality datasets were collected from nine commercial poultry‐pasture (AG) and three forested (FORS) headwater streams (2.4‐44 ha) in the upper Etowah River basin of Georgia to estimate total P (TP) loads and examine variability of hydrologic response and water quality of storm and nonstorm‐flow regimes. Data collection duration ranged from 18 to 22 months, and approximately 1,600 water quality samples were collected. Significant (p < 0.1) inverse relationships were detected between peak flow response variables and both drainage area and fraction of forest cover. Order‐of‐magnitude differences in TP and dissolved reactive P (DRP) concentration were observed between AG and FORS sites and among AG sites. TP yields of FORS sites ranged from 0.01 to 0.1 kg P/ha. Yields of AG sites ranged from 0.031 to 3.17 kg P/ha (median = 0.354 kg P/ha). With 95% confidence intervals, AG yields ranged from 0.025 to 13.1 kg P/ha. These small‐watershed‐scale yields were similar to field‐scale yields measured in other studies in other regions. TP yields were significantly related to area‐weighted Mehlich‐1 soil test P concentrations (p = 0.0073) and base‐flow water sample P concentrations (p 0.0005). Water quality sampling during base‐flow conditions may be a useful screening tool for P risk‐based management programs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号