There is concern that visitor-use associated activities, such as bathing, dish washing, wastewater production, and stock animal use near lakes and streams, could cause degradation of water quality in Yosemite National Park. A study was conducted during 2004-2007 to assess patterns in nutrient and Escherichia coli (E. coli) concentrations in the Merced and Tuolumne Rivers and characterize natural background concentrations of nutrients in the park. Results indicated that nutrient and E. coli concentrations were low, even compared to other undeveloped sites in the United States. A multiple linear regression approach was used to model natural background concentrations of nutrients, with basin characteristics as explanatory variables. Modeled nitrogen concentrations increased with elevation, and modeled phosphorus concentrations increased with basin size. Observed concentrations (±uncertainty) were compared to modeled concentrations (±uncertainty) to identify sites that might be impacted by point sources of nutrients, as indicated by large model residuals. Statistically significant differences in observed and modeled concentrations were observed at only a few locations, indicating that most sites were representative of natural background conditions. The empirical modeling approach used in this study can be used to estimate natural background conditions at any point along a study reach in areas minimally impacted by development, and may be useful for setting water-quality standards in many national parks. 相似文献
For the first time until now, the results from a prediction model (Atmospheric Dispersion Modelling System (ADMS)-Road) of pollutant dispersion in a street canyon were compared to the results obtained from biomonitors. In particular, the instrumental monitoring of particulate matter (PM10) and the biomonitoring of 14 polycyclic aromatic hydrocarbons (PAHs) and 11 metals by Quercus ilex leaves and Hypnum cupressiforme moss bags, acting as long- and short-term accumulators, respectively, were carried out. For both PAHs and metals, similar bioaccumulation trends were observed, with higher concentrations in biomonitors exposed at the leeward canyon side, affected by primary air vortex. The major pollutant accumulation at the leeward side was also predicted by the ADMS-Road model, on the basis of the prevailing wind direction that determines different exposure of the street canyon sides to pollutants emitted by vehicular traffic. A clear vertical (3, 6 and 9 m) distribution gradient of pollutants was not observed, so that both the model and biomonitoring results suggested that local air turbulences in the street canyon could contribute to uniform pollutant distribution at different heights. 相似文献
No personal aerosol sampler has been evaluated for monitoring aeroallergens in outdoor field conditions and compared to conventional stationary aerobiological samplers. Recently developed Button Personal Inhalable Aerosol Sampler has demonstrated high sampling efficiency for non-biological particles and low sensitivity to the wind direction and velocity. The aim of the present study was to evaluate the Button Sampler for the measurement of outdoor pollen grains and fungal spores side-by-side with the widely used Rotorod Sampler. The sampling was performed for 8 months (spring, summer and fall) at a monitoring station on the roof of a two-storied office building located in the center of the city of Cincinnati. Two identical Button Samplers, one oriented towards the most prevalent wind and the other towards the opposite wind and a Rotorod Sampler were placed side-by-side. The total fungal spore concentration ranged from 129 to 12,980 spores m(-3) (number per cubic meter of air) and the total pollen concentration from 4 to 4536 pollen m(-3). The fungal spore concentrations obtained with the two Button Samplers correlated well (r = 0.95; p<0.0001). The pollen data also showed positive correlation. These findings strongly support the results of earlier studies conducted with non-biological aerosol particles, which demonstrated a low wind dependence of the performance of the Button Sampler compared to other samplers. The Button Sampler's inlet efficiency was found to be more dependent on wind direction when sampling larger sized Pinaceae pollen grains (aerodynamic diameter approximately 65 mum). Compared to Rotorod, both Button Samplers measured significantly higher total fungal spore concentrations. For total pollen count, the Button Sampler facing the prevalent wind showed concentrations levels comparable to that of the Rotorod, but the Button Sampler oriented opposite to the prevalent wind demonstrated lower concentration levels. Overall, it was concluded that the Button Sampler is efficient for the personal sampling of outdoor aeroallergens, and is especially beneficial for aeroallergens of small particle size. 相似文献
In densely populated countries like China, clean water is one of the most challenging issues of prospective politics and environmental planning. Water pollution and eutrophication by excessive input of nitrogen and phosphorous from nonpoint sources is mostly linked to soil erosion from agricultural land. In order to prevent such water pollution by diffuse matter fluxes, knowledge about the extent of soil loss and the spatial distribution of hot spots of soil erosion is essential. In remote areas such as the mountainous regions of the upper and middle reaches of the Yangtze River, rainfall data are scarce. Since rainfall erosivity is one of the key factors in soil erosion modeling, e.g., expressed as R factor in the Revised Universal Soil Loss Equation model, a methodology is needed to spatially determine rainfall erosivity. Our study aims at the approximation and spatial regionalization of rainfall erosivity from sparse data in the large (3,200 km2) and strongly mountainous catchment of the Xiangxi River, a first order tributary to the Yangtze River close to the Three Gorges Dam. As data on rainfall were only obtainable in daily records for one climate station in the central part of the catchment and five stations in its surrounding area, we approximated rainfall erosivity as R factors using regression analysis combined with elevation bands derived from a digital elevation model. The mean annual R factor (Ra) amounts for approximately 5,222 MJ?mm?ha?1?h?1?a?1. With increasing altitudes, Ra rises up to maximum 7,547 MJ?mm ha?1?h?1 a?1 at an altitude of 3,078 m a.s.l. At the outlet of the Xiangxi catchment erosivity is at minimum with approximate Ra?=?1,986 MJ?mm?ha?1?h?1?a?1. The comparison of our results with R factors from high-resolution measurements at comparable study sites close to the Xiangxi catchment shows good consistance and allows us to calculate grid-based Ra as input for a spatially high-resolution and area-specific assessment of soil erosion risk. 相似文献
In many species reproduction and embryonic development have been shown to be sensitive to environmental contaminants. Understanding embryonic exposure to environmental contaminants is thus highly important. In this study concentrations of brominated flame retardants (BFRs) were measured in zebrafish eggs after parental exposure for 42 days via the diet. Zebrafish were exposed to two doses of eleven structurally-diverse BFRs. Eight BFRs were detected in the female zebrafish and maternal transfer to eggs was evident for all eight compounds. The highest concentrations in eggs were observed for hexabromocyclododecane (HBCD) and 2,4,4'-tribromodiphenyl ether (BDE 28), followed by 2,2',3,4,4',5',6-heptabromodiphenyl ether (BDE 183) and tetrabromobisphenol A 2,3-dibromopropyl ether (TBBPA DBPE). Five potential BFR metabolites were tentatively identified in female fish and maternal transfer was observed also for these compounds. The lipid adjusted concentrations in eggs were significantly higher than the concentrations in female fish for several of the BFRs. Further, the results showed a generally higher transfer in the lower exposure level and also indicated a dependency on the physico-chemical properties of the compounds. 相似文献
Determination of triazines herbicides (atrazine and simazine) by high performance liquid chromatography (HPLC) in samples of trophic chain were worked out. Determination limits of 0.5 μg g−1 for atrazine, 0.8 μg g−1 for simazine with pesticides recovery of 70–77% in trophic chain samples were obtained. The content of simazine in soils was in range 1.72–57.89 μg g−1, in grass 5–88 μg g−1, in milk 2.32–15.29 μg g−1, in cereals 10.98–387 μg g−1, in eggs 30.14–59.48 μg g−1, for fruits: 2.45–6.19 μg g−1. The content of atrazine in soils was in range 0.69–19.59 μg g−1, in grass 7.85–23.85 μg g−1, in cereals 1.88–43.08 μg g−1. Cadmium, lead and zinc were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) in the same samples as atrazine and simazine. Determination limits for cadmium 5 × 10−3 μg g−1, for lead 1 × 10−2 μg g−1, and for zinc 0.2 × 10−3 μg g−1, were obtained. The content of cadmium in soil was in range 0.13–5.89 μg g−1, in grass 114–627.72 × 10−3 μg g−1, in milk 8.88–61.88 × 10−3 μg g−1, in cereals 0.20–0.31 μg g−1, in eggs 0.11–0.15 μg g−1, in fruits 0.23–0.59 μg g−1. The content of lead in soils was in range 0.57–151.50 μg g−1, in grass 0.16–136.57 μg g−1, in milk 1.16–3.74 μg g−1, in cereals 1.05–5.47 μg g−1, in eggs 5.79–55.87 μg g−1, in fruits 21.00–87.36 μg g−1. Zinc content in soil was in range 9.15–424.5 μg g−1, in grass 35.20–55.87 μg g−1, in milk 20.00–34.38 μg g−1, in cereals 14.94–28.78 μg g−1, in eggs 15.67–32.01 μg g−1, in fruits 14.94–18.88 μg g−1.
Described below extraction and mineralization methods for particular trophic chains allowed to determine of atrazine, simazine, cadmium, lead and zinc with good repeatability and precision. Emphasis was focused on liquid–liquid extraction and solid-phase extraction of atrazine and simazine from analysed materials, as well as, on monitoring the content of herbicides and metals in soil and along trophic chain. Higher concentration of pesticides in samples from west region of Poland in comparison to that of east region is likely related to common applying them in Western Europe in relation to East Europe. The content of metals strongly depends on samples origin (industry area, vicinity of motorways). 相似文献
This study tests an alternative method to the traditional unhairing method used during the process of tanning the hides. The new method is based on the substitution of sodium sulfide by hydrogen peroxide as an unhairing agent in both hair recovery and recirculation of the floats employed in the process. The properties of the hides obtained using the two methods have been compared and the results indicate that those hides have similar physical, chemical, and organoleptic properties. However, the differences existing from an environmental point of view are significant. These include reductions of water consumption (approx 70%), chemical oxygen demand (approx 35%), toxicity (98%) and total kjendhal nitrogen (50%). Also, the risk associated with the production of hydrogen sulfide is eliminated, which implies a great improvement in terms of safety for the workers. Given the large amounts of water and chemical pollution discharged in the process, the reductions in absolute values represent a significant improvement. A financial assessment was carried out to demonstrate that the proposed new system is 16% more economic than the traditional one. 相似文献
Large-scale studies are essential to assess the emission patterns and spatial distribution of organohalogenated pollutants (OHPs) in the environment. Bird eggs have several advantages compared to other environmental media which have previously been used to map the distribution of OHPs. In this study, large-scale geographical variation in the occurrence of OHPs, such as polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and organochlorine pesticides (OCPs), was investigated throughout Europe using eggs of a terrestrial residential passerine species, the great tit (Parus major). Great tit eggs from 22 sampling sites, involving urban, rural and remote areas, in 14 European countries were collected and analysed (5-8 eggs per sampling site). The environmentally most important congeners/compounds of the analysed pollutants were detectable in all sampling locations. For PCBs, PBDEs and OCPs, no clear geographical contamination pattern was found. Sum PCB levels ranged from 143 ng/g lipid weight (lw) to 3660 ng/g lw. As expected, PCB concentrations were significantly higher in the sampled urban compared to the remote locations. However, the urban locations did not show significantly higher concentrations compared to the rural locations. Sum PBDEs ranged from 4.0 ng/g lw to 136 ng/g lw. PBDEs were significantly higher in the urbanized sampling locations compared to the other locations. The significant, positive correlation between PCB and PBDE concentrations suggests similar spatial exposure and/or mechanisms of accumulation. Significantly higher levels of OCPs (sum OCPs ranging from 191 ng/g lw to 7830 ng/g lw) were detected in rural sampling locations. Contamination profiles of PCBs, PBDEs and OCPs differed also among the sampling locations, which may be due to local usage and contamination sources. The higher variance among sampling locations for the PCBs and OCPs, suggests that local contamination sources are more important for the PCBs and OCPs compared to the PBDEs. To our knowledge, this is the first study in which bird eggs were used as a monitoring tool for OHPs on such a large geographical scale. 相似文献
In this work, anaerobic digestion of pig slurry and successive composting of the digestate after centrifugation were studied by means of chemical analysis, FTIR and fluorescence spectroscopy as excitation–emission matrix (EEM). Chemical analysis highlighted the organic matter transformation occurring during the processes. A decrease of volatile solids and total organic carbon were observed in the digestate with respect to the fresh pig slurry as a consequence of the consumption of sugars, proteins, amino acids and fatty acids used by microorganisms as a C source. Water Extractable Organic Matter (WEOM) was obtained for all samples and fractionated into a hydrophilic and a hydrophobic fraction. The highest WEOM value was found in the pig slurry indicating a high content of labile organic C. The digestate centrifuged and the digestate composted showed lower hydrophilic and higher hydrophobic contents because of the decrease of labile C. Total phenolic content was lower in the digestate with respect to fresh pig slurry sample (36.7%) as a consequence of phenolic compounds degradation. The strong decrease of total reducing sugars in the digestate (76.6%) as compared to pig slurry confirmed that anaerobic process proceed mainly through consumption of sugars which represent a readily available energy source for microbial activity. FTIR spectra of pig slurry showed bands indicative of proteins and carbohydrates. A drop of aliphatic structures and a decrease of polysaccharides was observed after the anaerobic process along with the increase of the peak in the aromatic region. The composted substrate showed an increase of aromatic and a relative decrease of polysaccharides. EEM spectra provided tryptophan:fulvic-like fluorescence ratios which increased from fresh substrate to digestate because of the OM decompostion. Composted substrate presented the lowest ratio due to the humification process. 相似文献