首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   747篇
  免费   1篇
  国内免费   29篇
安全科学   14篇
废物处理   54篇
环保管理   56篇
综合类   88篇
基础理论   133篇
污染及防治   299篇
评价与监测   85篇
社会与环境   40篇
灾害及防治   8篇
  2023年   51篇
  2022年   98篇
  2021年   88篇
  2020年   23篇
  2019年   29篇
  2018年   37篇
  2017年   34篇
  2016年   42篇
  2015年   20篇
  2014年   38篇
  2013年   72篇
  2012年   24篇
  2011年   27篇
  2010年   23篇
  2009年   12篇
  2008年   25篇
  2007年   22篇
  2006年   17篇
  2005年   14篇
  2004年   12篇
  2003年   7篇
  2002年   5篇
  2001年   4篇
  2000年   9篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   2篇
  1983年   5篇
  1982年   5篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
  1964年   2篇
排序方式: 共有777条查询结果,搜索用时 859 毫秒
591.
The increasing demand of water has brought tremendous pressure on groundwater resources in the regions were groundwater is prime source of water. The objective of this study was to explore groundwater potential zones in Maheshwaram watershed of Andhra Pradesh, India with semi-arid climatic condition and hard rock granitic terrain. GIS-based modelling was used to integrate remote sensing and geophysical data to delineate groundwater potential zones. In the present study, Indian Remote Sensing RESOURCESAT-1, Linear Imaging Self-Scanner (LISS-4) digital data, ASTER digital elevation model and vertical electrical sounding data along with other data sets were analysed to generate various thematic maps, viz., geomorphology, land use/land cover, geology, lineament density, soil, drainage density, slope, aquifer resistivity and aquifer thickness. Based on this integrated approach, the groundwater availability in the watershed was classified into four categories, viz. very good, good, moderate and poor. The results reveal that the modelling assessment method proposed in this study is an effective tool for deciphering groundwater potential zones for proper planning and management of groundwater resources in diverse hydrogeological terrains.  相似文献   
592.
Industrial wastewater discharged into aquatic ecosystems either directly or because of inadequate treatment of process water can increase the concentrations of pollutants such as toxic metals and others, and subsequently deteriorate water quality, environmental ecology and human health in the Dhaka Export Processing Zone (DEPZ), the largest industrial belt of 6-EPZ in Bangladesh. Therefore, in order to monitor the contamination levels, this study collected water samples from composite effluent points inside DEPZ and the surrounding surface water body connected to effluent disposal sites and determined the environmental hazards by chemical analysis and statistical approach. The water samples were analysed by inductively coupled plasma mass spectrometry to determine 12 trace metals such as As, Ag, Cr, Co, Cu, Li, Ni, Pb, Se, Sr, V and Zn in order to assess the influence of multi-industrial activities on metal concentrations. The composite effluents and surface waters from lagoons were characterized by a strong colour and high concentrations of biochemical oxygen demand, chemical oxygen demand, electrical conductivity, pH, total alkalinity, total hardness, total organic carbon, Turb., Cl(-), total suspended solids and total dissolved solids, which were above the limit of Bangladesh industrial effluent standards, but dissolved oxygen concentration was lower than the standard value. The measurement of skewness and kurtosis values showed asymmetric and abnormal distribution of the elements in the respective phases. The mean trend of variation was found in a decreasing order: Zn > Cu > Sr > Pb > Ni > Cr > Li > Co > V > Se > As > Ag in composite industrial effluents and Zn > Cu > Sr > Pb > Ni > Cr > Li > V > As > Ag > Co > Se in surface waters near the DEPZ. The strong correlations between effluent and surface water metal contents indicate that industrial wastewaters discharged from DEPZ have a strong influence on the contamination of the surrounding water bodies by toxic metals. The average contamination factors were reported to be 0.70-96.57 and 2.85-1,462 for industrial effluents and surface waters, respectively. The results reveal that the surface water in the area is highly contaminated with very high concentrations of some heavy/toxic metals like Zn, Pb, Cu, Ni and Cr; their average contamination factors are 1,460, 860, 136, 74.71 and 4.9, respectively. The concentrations of the metals in effluent and surface water were much higher than the permissible limits for drinking water and the world average concentrations in surface water. Therefore, the discharged effluent and surface water may create health hazards especially for people working and living inside and in the surrounding area of DEPZ.  相似文献   
593.
Many drainage schemes and salinity control projects have been executed world wide. Pipe drainage has widely been used in Pakistan, Egypt and India to control waterlogging. The impact of pipe drainage on land and water was evaluated in this paper using data of three pipe drainage projects in Pakistan namely Khushab Salinity Control and Reclamation Project, Fourth Drainage Project in Faisalabad and Swabi Salinity Control and Reclamation Project. Data by regular monitoring of these projects were collected. The effect of pipe drainage on water table depth at these three locations has been compared. Water quality and soil salinity improvement due to the pipe drainage has also been investigated. Data, related to water table depths and discharges from drain pipes/wells, was collected. Observation wells, installed at various places by the Water and Power Development Authority, were used for collection of this data. To evaluate the impact of the projects on salinity, soil samples from all the three locations were tested. A questionnaire was prepared to get the view of the people about the projects. It was revealed that in these areas, due to subsurface pipe drainage, the percentage of the abandoned land has been considerably decreased. Over drainage was observed in a few places of the projects. The farmers at such places were asked to change their cropping patterns. Ultimately, there has been an increase in area under cultivation, crop yields and cropping intensity in the projects’ area.  相似文献   
594.
595.
Analysis and forecasting of air quality parameters are important topics of atmospheric and environmental research today due to the health impact caused by air pollution. This study examines transformation of nitrogen dioxide (NO2) into ozone (O3) at urban environment using time series plot. Data on the concentration of environmental pollutants and meteorological variables were employed to predict the concentration of O3 in the atmosphere. Possibility of employing multiple linear regression models as a tool for prediction of O3 concentration was tested. Results indicated that the presence of NO2 and sunshine influence the concentration of O3 in Malaysia. The influence of the previous hour ozone on the next hour concentrations was also demonstrated.  相似文献   
596.
Bottom sediments from Nakaumi Lagoon and the Honjo Area in southwest Japan were analyzed to determine their geochemical compositions and to assess potential impacts by comparison with sediment quality guidelines. Present-day water quality was also assessed. Results showed that the water quality of Nakaumi Lagoon and the Honjo area contrasts between their upper and lower parts. Average abundances of As, Pb, Zn, Cu, Ni, and Cr in the Nakaumi sediments were 12, 25, 135, 32, 21, and 46 ppm, respectively, compared to 10, 24, 110, 26, 20, and 38 ppm in the Honjo area. All averages are greater than those of the upper continental crust. The elevated metal concentrations are probably related to the fine-grained nature of the sediments, reducing bottom conditions produced by abundant organic matter and possibly minor non-point anthropogenic sources. Trace metal contents are strongly correlated with Fe2O3, suggesting that Fe oxides play a role in controlling abundances. Metal concentrations exceed the NYSDEC lowest effect level and CCME interim sediment quality guidelines that indicate moderate impact on aquatic organisms. Average abundances of As and Zn are comparable to the Coastal Ocean Sediment Database threshold, whereas maximum concentrations exceed that value, indicating that the concentrations of these metals are potentially toxic. These enrichments suggest that regular monitoring may be desirable even where no point sources of metal pollution exist.  相似文献   
597.
Graft copolymerization of methacrylic acid (MAc) onto cellulose triacetate (CTA) films was conducted by gamma rays. The grafting conditions were optimized. The structure of grafted CTA films was characterized by Fourier transform infra red–attenuated total reflection, scanning electron microscopy, thermal gravimetric analysis, CHNS/O microanalyzer and, surface area and porosity analyzer. The grafted CTA films were exploited in adsorption of ethyl violet (EV) and phenol red (PR) dyes. The adsorption capacity of the grafted CTA films was investigated at various variables. The adsorption isotherms and kinetic study were examined. Further, the dyed grafted CTA films were used in measurements of high dose radiation. The results indicate that the useful dose range extents up to 440 and 300 kGy for EV and PR, respectively. The effects of relative humidity during irradiation, shelf-life, pre- and post-irradiation storage in dark and indirect daylight conditions on dosimeters performance were investigated.  相似文献   
598.

Traditional fertilizers are highly inefficient, with a major loss of nutrients and associated pollution. Alternatively, biochar loaded with phosphorous is a sustainable fertilizer that improves soil structure, stores carbon in soils, and provides plant nutrients in the long run, yet most biochars are not optimal because mechanisms ruling biochar properties are poorly known. This issue can be solved by recent developments in machine learning and computational chemistry. Here we review phosphorus-loaded biochar with emphasis on computational chemistry, machine learning, organic acids, drawbacks of classical fertilizers, biochar production, phosphorus loading, and mechanisms of phosphorous release. Modeling techniques allow for deciphering the influence of individual variables on biochar, employing various supervised learning models tailored to different biochar types. Computational chemistry provides knowledge on factors that control phosphorus binding, e.g., the type of phosphorus compound, soil constituents, mineral surfaces, binding motifs, water, solution pH, and redox potential. Phosphorus release from biochar is controlled by coexisting anions, pH, adsorbent dosage, initial phosphorus concentration, and temperature. Pyrolysis temperatures below 600 °C enhance functional group retention, while temperatures below 450 °C increase plant-available phosphorus. Lower pH values promote phosphorus release, while higher pH values hinder it. Physical modifications, such as increasing surface area and pore volume, can maximize the adsorption capacity of phosphorus-loaded biochar. Furthermore, the type of organic acid affects phosphorus release, with low molecular weight organic acids being advantageous for soil utilization. Lastly, biochar-based fertilizers release nutrients 2–4 times slower than conventional fertilizers.

  相似文献   
599.
Environmental Science and Pollution Research - It is well known that the lack of an effective treatment of tuna wash processing wastewater may pose substantial environmental and public health...  相似文献   
600.
Environmental Science and Pollution Research - Earth is in the Anthropocene era and humankind deteriorates the global environment; thus, there is a dire need for sustainable policies at all levels....  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号