首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   756篇
  免费   2篇
  国内免费   13篇
安全科学   31篇
废物处理   54篇
环保管理   83篇
综合类   72篇
基础理论   128篇
环境理论   2篇
污染及防治   260篇
评价与监测   109篇
社会与环境   31篇
灾害及防治   1篇
  2023年   24篇
  2022年   62篇
  2021年   40篇
  2020年   9篇
  2019年   13篇
  2018年   20篇
  2017年   21篇
  2016年   20篇
  2015年   13篇
  2014年   44篇
  2013年   98篇
  2012年   37篇
  2011年   38篇
  2010年   25篇
  2009年   29篇
  2008年   29篇
  2007年   35篇
  2006年   25篇
  2005年   35篇
  2004年   23篇
  2003年   14篇
  2002年   12篇
  2001年   7篇
  2000年   6篇
  1999年   5篇
  1998年   5篇
  1997年   4篇
  1996年   6篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1984年   2篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   6篇
  1975年   2篇
  1972年   2篇
  1967年   2篇
  1965年   3篇
  1964年   3篇
  1963年   4篇
  1962年   2篇
  1959年   3篇
  1956年   2篇
  1955年   3篇
排序方式: 共有771条查询结果,搜索用时 15 毫秒
61.

Background, aim and scope

Lead (Pb) accumulation in soils affects plants primarily through their root systems. The aim of this study was to investigate early symptoms of the loss of membrane integrity and lipid peroxidation in root tissues and physiological adaptation mechanism to Pb in accumulating ecotypes (AE) and non-accumulating ecotypes (NAE) of Sedum alfredii under Pb stress in hydroponics.

Methods and results

Histochemical in situ analyses, fluorescence imaging, and normal physiological analysis were used in this study. Pb accumulation in roots of both AE and NAE increased linearly with increasing Pb levels (0?C200???M), and a significant difference between both ecotypes was noted. Both loss of plasma membrane integrity and lipid peroxidation in root tissues became serious with increasing Pb levels, maximum tolerable Pb level was 25 and 100???M for NAE and AE, respectively. Pb supplied at a toxic level caused a burst of reactive oxygen species (ROS) in root cells in both ecotypes. However, the root cells of AE had inherently higher activities of superoxide dismutase (SOD), guaiacol peroxidase (POD), and lipoxygenase (LOX) in control plants, and the induction response of these antioxidant enzymes occurred at lower Pb level in AE than NAE. AE plants maintained higher ascorbic acid and H2O2 concentrations in root cells than NAE when exposed to different Pb levels, and Pb induced more increase in dehydroascorbate (DHA), catalase (CAT), and ascorbate peroxidase (APX) in AE than NAE roots.

Discussion and conclusion

Results indicate that histochemical in situ analyses of root cell death and lipid peroxidation under Pb short-term stress was sensitive, reliable, and fast. Higher tolerance in roots of accumulating ecotype under Pb stress did depend on effective free oxygen scavenging by making complex function of both constitutively higher activities and sensitive induction of key antioxidant enzymes in root cells of S. alfredii.  相似文献   
62.

Background

The photocatalytic degradation of pyrene under UV (125?W Hg-Arc, 10.4?mW/cm2) irradiation of TiO2 aqueous suspension has been found to be highly improved with the dissolved transition metal ions like Cu2+, Fe3+, Ag+, and Au3+, etc. As the reduction potential of these metals lies below the conduction band (CB) position (?0.1?eV) of TiO2, the photoexcited electron transfer occurs more readily and reduces electron?Chole recombination rate. Therefore, it has a beneficial influence on the photocatalytic ability of TiO2 because of rapid Fermi energy equilibrium between the CB of TiO2 and its surface adsorbed metal ions.

Results and discussion

The Fermi level is referred to as the electrochemical potential and plays an important role in the band theory of solids. When metal and semiconductor are in contact, electron migration from photoirradiated semiconductor to the deposited metal occurs at the interface until two Fermi levels equilibrate and enhanced the photocatalytic activity of semiconductor photocatalyst. Ni2+ having more negative reduction potential (?0.25?eV) than the CB of TiO2 imparts negligible co-catalytic activity to TiO2 photoreaction. It also revealed that loading of Au3+ ions displayed higher degradation rate of pyrene than Au photodeposition. Furthermore, when the amount of dissolved Fe+3 and Au3+ ions gradually increases from 0.1 to 2?wt.%, the pyrene photodecomposition rate also become faster.  相似文献   
63.
Because of the continuous production of large amount of waste tires, the disposal of waste tires represents a major environmental issue throughout the world. This paper reports the utilization of waste tires (hard-to-dispose waste) as a precursor in the production of activated carbons (pollution-cleaning adsorbent). In the preparation of activated carbon (AC), waste rubber tire (WRT) was thermally treated and activated. The tire-derived activated carbon was characterized by means of scanning electron microscope, energy-dispersive X-ray spectroscopy, FTIR spectrophotometer, and X-ray diffraction. In the IR spectrum, a number of bands centred at about 3409, 2350, 1710, 1650, and 1300–1000 cm?1 prove the present of hydroxyl and carboxyl groups on the surface of AC in addition to C═C double bonds. The developed AC was tested and evaluated as potential adsorbent removal of chromium (III). Experimental parameters, such as contact time, initial concentration, adsorbent dosage and pH were optimized. A rapid uptake of chromium ions was observed and the equilibrium is achieved in 1 h. It was also found that the adsorption process is pH dependent. This work adds to the global discussion of the cost-effective utilization of waste rubber tires for waste water treatment.  相似文献   
64.
The adsorption of crystal violet from aqueous solution by NaOH-modified rice husk was investigated in a laboratory-scale fixed-bed column. A two-level three factor (23) full factorial central composite design with the help of Design Expert Version 7.1.6 (Stat Ease, USA) was used for optimisation of the dynamic dye adsorption process and evaluation of interaction effects of different operating parameters: initial dye concentration (100–200 mg L?1), flow rate (10–30 mL min?1) and bed height (5–25 cm). A correlation coefficient (R 2) value of 0.999, model F value of 1,936.59 and its low p value (<0.0001) along with lower value of coefficient of variation (1.38 %) indicated the fitness of the response surface quadratic model developed during the present study. Numerical optimisation applying desirability function was used to identify the optimum conditions for a targeted breakthrough time of 12 h. The optimum conditions were found to be initial solution pH?=?8.00, initial dye concentration?=?100 mg L?1, flow rate?=?22.88 mL min?1 and bed height?=?18.75 cm. A confirmatory experiment was performed to evaluate the accuracy of the optimised procedure. Under the optimised conditions, breakthrough appeared after 12.2 h and the column efficiency was determined as 99 %. The Thomas model showed excellent fit to the dynamic dye adsorption data obtained from the confirmatory experiment. Thereby, it was concluded that the current investigation gives valuable insights for designing and establishing a continuous wastewater treatment plant.  相似文献   
65.
Arsenic (As) contamination in the environment has attracted considerable attention worldwide. The objective of the present study was to see the comparative effect of As species As(III) and As(V) on accumulation, biochemical responses, and gene expression analysis in Brassica juncea var. Pusa Jaganath (PJn). Hydroponically grown 14-day-old seedlings of B. juncea were treated with different concentrations of As(III) and As(V). Accumulation of total As increased with increasing concentration of both As species and exposure time, mainly in roots. Reduction in seed germination, root–shoot length, chlorophyll, and protein content were observed with increasing concentration and exposure time of both As species, being more in As(III)-treated leaves. PJn variety showed that antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX)) and stress-related parameters (cysteine, proline, and malondialdehyde (MDA)) were stimulated and allows plant to tolerate both As species. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis in leaves showed significant changes in protein profile with more stringent effect with As(III) stress. Semiquantitative RT-PCR analysis showed regulation in expression of phytochelatin synthase (PCS), metallothionine-2 (MT-2), glutathione reductase (GR), and glutathione synthetase (GS) genes under both As(III) and As(V) stresses. Results suggested that accumulation and inhibition on physiological parameters differ according to the As species, while molecular and biochemical parameters showed a combinatorial type of tolerance mechanism against As(III) and As(V) stresses.  相似文献   
66.
Das S  Ghosh A  Adhya TK 《Chemosphere》2011,84(1):54-62
Combination of divergent active principles to achieve broad-spectrum control is gaining popularity to manage the weed menace in intensive agriculture. However, such application could have non-target impacts on the soil processes affecting soil ecology and environmental interactions. A field experiment was conducted to investigate the impact of separate and combined applications of herbicides bensulfuron methyl and pretilachlor on the emission of N2O and CH4, and related soil and microbial parameters in a flooded alluvial field planted to rice cv Lalat. Single application of the herbicide bensulfuron methyl or pretilachlor resulted in a significant reduction of N2O and CH4 emissions while the combination of these two herbicides distinctly increased N2O and CH4 emissions. Cumulative N2O emissions (kg N2O-N) followed the order of bensulfuron methyl (0.35 kg ha−1) < pretilachlor (0.36 kg ha−1) < control (0.45 kg ha−1) < bensulfuron methyl 0.6% + pretilachlor 6.0% single dose (0.49 kg ha−1) < bensulfuron methyl 0.6% + pretilachlor 6.0% double dose (0.54 kg ha−1). Cumulative CH4 emissions (kg CH4), on the other hand, followed the order of bensulfuron methyl (47.89 kg ha−1) < pretilachlor (73.17 kg ha−1) < bensulfuron methyl 0.6% + pretilachlor 6.0% single dose (93.50 kg ha−1) < control (106.54 kg ha−1) < bensulfuron methyl 0.6% + pretilachlor 6.0% double dose (124.67 kg ha−1). The inhibitory effect of separate application of herbicides bensulfuron methyl 0.6% and pretilachlor 6.0% on N2O emission was linked to lower mineral N, lower denitrifying and nitrifying activity and low denitrifier and nitrifier populations. Inhibitory effect on CH4 emission, on the contrary, was linked to prevention in the drop of redox potential, lower readily mineralizable carbon (RMC) and microbial biomass carbon (MBC) contents as well as lower methanogenic and higher methanotrophic bacterial population. Admittedly, stimulatory effect of combined application of herbicides bensulfuron methyl 0.6% and pretilachlor 6.0% at double dose on N2O and CH4 emission was related to reversal of the identified indicators of inhibition. Results indicate that while individual application of herbicides bensulfuron methyl 0.6% or pretilachlor 6.0% can reduce N2O and CH4 emission from flooded soil planted to rice, their combined application at normal dose can keep the emission at a comparatively lower level with significantly higher grain yield as compared to the herbicides applied alone.  相似文献   
67.
Gupta B  Rani M  Kumar R  Dureja P 《Chemosphere》2011,85(5):710-716
The widespread occurrence of pesticide residues in different agricultural and food commodities has raised concern among the environmentalists and food chemists. In order to keep a proper track of these materials, studies on their decay profiles in the various segments of ecosystem under varying environmental conditions are needed. In view of this, the metabolites of quinalphos in water and soil under controlled conditions and in plants, namely tomato and radish in field conditions have been analysed and possible pathways suggested. In order to follow the decay of the pesticide, an HPLC procedure has been developed. Studies conducted in water at different temperatures, pH and organic content reveal that the persistence of the pesticide decreases with the increase in all the three variables. In the three different types of soils studied, the effect of pH is more or less apparent on a similar line. On an average a faster decay is observed in the case of plants than in water and soil. The decay profiles in all these cases follow first order kinetics. The metabolites were identified by GC-MS. The investigations reflect that degradation occurs through hydrolysis, S-oxidation, dealkylation and thiono-thiol rearrangement. The pathways seem to be complex and different metabolites were observed with the change in the matrix. Quinalphos oxon, O-ethyl-O-quinoxalin-2-yl phosphoric acid, 2-hydroxy quinoxaline and quinoxaline-2-thiol were observed in all the matrices. Results further indicate that the metabolites, 2-hydroxy quinoxaline and oxon, which are more toxic than parent compound, persist for a longer time.  相似文献   
68.
In the present study, we have investigated the influence of polymorphism of GSTM1 and GSTT1 genes and confounding factors such as age, sex, exposure duration and consumption habits on cytogenetic biomarkers. Frequency of sister chromatid exchanges (SCEs), high frequency cell (HFC) and cytokinesis blocked micronuclei (CBMN) were evaluated in peripheral blood lymphocytes of 115 occupationally exposed road construction workers and 105 unexposed individuals. The distribution of null and positive genotypes of glutathione-S transferase gene was evaluated by multiplex PCR among control and exposed subjects. An increased frequency of CBMN (7.03 ± 2.08); SCE (6.95 ± 1.76) and HFC (6.28 ± 1.69) were found in exposed subjects when compared to referent (CBMN - 3.35 ± 1.10; SCE - 4.13 ± 1.30 and HFC - 3.98 ± 1.56). These results were found statistically significant at p < 0.05. When the effect of confounding factors on the frequency of studied biomarkers was evaluated, a strong positive interaction was found. The individuals having GSTM1 and GSTT1 null genotypes had higher frequency of CBMN, SCE and HFC. The association between GSTM1 and GSTT1 genotypes and studied biomarkers was found statistically significant at p < 0.05. Our findings suggest that individuals having null type of GST are more susceptible to cytogenetic damage by occupational exposure regardless of confounding factors. There is a significant effect of polymorphism of these genes on cytogenetic biomarkers which are considered as early effects of genotoxic carcinogens.  相似文献   
69.

Purpose

??-Hexachlorocyclohexane (HCH), ??-HCH, and lindane (??-HCH) were listed as persistent organic pollutants by the Stockholm Convention in 2009 and hence must be phased out and their wastes/stockpiles eliminated. At the last operating lindane manufacturing unit, we conducted a preliminary evaluation of HCH contamination levels in soil and water samples collected around the production area and the vicinity of a major dumpsite to inform the design of processes for an appropriate implementation of the Convention.

Methods

Soil and water samples on and around the production site and a major waste dumpsite were measured for HCH levels.

Results

All soil samples taken at the lindane production facility and dumpsite and in their vicinity were contaminated with an isomer pattern characteristic of HCH production waste. At the dumpsite surface samples contained up to 450?g?kg?1 ?? HCH suggesting that the waste HCH isomers were simply dumped at this location. Ground water in the vicinity and river water was found to be contaminated with 0.2 to 0.4?mg?l?1 of HCH waste isomers. The total quantity of deposited HCH wastes from the lindane production unit was estimated at between 36,000 and 54,000?t.

Conclusions

The contamination levels in ground and river water suggest significant run-off from the dumped HCH wastes and contamination of drinking water resources. The extent of dumping urgently needs to be assessed regarding the risks to human and ecosystem health. A plan for securing the waste isomers needs to be developed and implemented together with a plan for their final elimination. As part of the assessment, any polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDF) generated during HCH recycling operations need to be monitored.  相似文献   
70.
The developing countries i.e., the non-Annex-I countries (parties to the Kyoto Protocol but not responsible to any reduction target yet) in the Kyoto Protocol whose economies are in transition are also allowed to reduce GHG emissions. Among these, the countries that have accepted the Kyoto Protocol may be benefited from CDM projects to promote sustainable development. The developed countries i.e., the Annex-I countries (that have signed the Kyoto Protocol & are responsible to have specific GHG emission reduction target) or the investing countries, in return, have privilege to purchase CER credits (in units equivalent to one tonne of CO2 gas emission reduction) to meet the emission target as specified in the Kyoto Protocol. The key step in understanding about CDM is to grasp the concept of “baseline” and “additionality”. The “Baseline” is the emissions level that would have existed if a CDM project had not happened. The feature of an approved CDM project is that the planned reductions would not occur without the additional incentive provided by emission reduction credits; this concept is known as “Additionality”. According to environmental additionality concept, baseline emission minus project emission is equal to emissions reduction. “Investment Additionality,” ultimately rejected during negotiation of the “Marrakech Accords” and “Financial Additionality,” are the two important concepts. The concept of trading of CER matches to the idea of Pigovian tax (equal to the negative externality and which is considered one of the “traditional” means of bringing a modicum of market forces) in Economics, making pollution more costly to the polluter, as the polluters have negative cost since they save money by polluting; hence, there are supposed negative externalities associated with the market activity. Economic theory predicts that in an economy where the cost of reaching mutual agreement between parties is high and where pollution is diffuse, Pigovian tax will be an efficient way to promote the public interest and will lead to an improvement of the quality of life measured by the Genuine Progress Indicator and other human economic indicators, as well as higher gross domestic product growth. We can seek a level of pollution such that the marginal savings (MS) to one polluting unit from pollution (−MC) is equal to marginal damage (MD) from pollution over the entire population, since pollution is a public bad i.e., MS (x*) = ∑MDi (x*) where ∑Di (x) is the total damage. Though the responsibility of reduction in emission does not lie on the non-Annex-I countries, still effort of maintaining global emission balance can be expected equally from developed and developing countries. The responsibilities of Kyoto Protocol are (a) to reduce global GHG emissions, (b) to bring about sustainable development in the developing countries lie on above two groups since its effect on February 16, 2005. Different polluters have different costs of pollution control. The least costly way of controlling pollution from various sources that reflects different costs of pollution control making the set of environmental regulations to achieve the emission target at the lowest cost makes the regulation cost-effective. Though efficiency is not attainable for many regulations, cost-effectiveness is attainable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号