首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   1篇
  国内免费   4篇
安全科学   7篇
废物处理   27篇
环保管理   25篇
综合类   18篇
基础理论   24篇
污染及防治   59篇
评价与监测   35篇
社会与环境   8篇
  2023年   5篇
  2022年   5篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   10篇
  2017年   2篇
  2016年   9篇
  2015年   7篇
  2014年   11篇
  2013年   23篇
  2012年   7篇
  2011年   9篇
  2010年   4篇
  2009年   6篇
  2008年   13篇
  2007年   7篇
  2006年   9篇
  2005年   13篇
  2004年   2篇
  2003年   7篇
  2002年   5篇
  2001年   5篇
  2000年   4篇
  1999年   1篇
  1998年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1966年   2篇
  1965年   3篇
  1964年   1篇
排序方式: 共有203条查询结果,搜索用时 15 毫秒
101.
Water availability in arid regions is both sporadic and highly variable in quantity. If the water quality shows large variations of salinity and concentration of other chemical constituents with depth and time span, it has considerable effect on the entire hydrological set up of the area. In the Saidabad tahsil area, the deep aquifers that supply water to borewells in the alluvial plain of the Mathura region, Uttar Pradesh, have higher salinity than those of the dugwells from the shallow aquifers. The excessive drilling of tubewells and high yield tubewells are resulting in deterioration of water quality of the shallow aquifers. On the contrary, the chemical constituents such as, Na+, K +, Cl -, andHCO 3 - show higher concentration in shallow aquifers than deep aquifers. A study carried out to monitor water quality in this region reveals that the groundwater quality varies with depth and time span in shallow and deep aquifers. Factors controlling variations in salinity and concentration of chemical constituents of the water in the two types of aquifers are discussed. The relative merits of the shallow water for potability are pointed out with respect to salinity concentrations and public health.  相似文献   
102.
Starch/Poly(vinylalcohol) blends in two different ratios (60:40 and 50:50) were prepared with glycerol as a plasticizer. Films were cast by a solution casting method. One set of films were filled with 10 wt% of bentonite clay and another set of films were crosslinked with epichlorohydrin in an alkaline medium. The prepared film samples were characterized with dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). The presence of clay and crosslinking with epichlorohydrin was found to have considerable effect on the dynamic mechanical properties and thermal stability of the films. Intercomponent H-bonding between starch, Poly(vinylalcohol) and glycerol enhanced the thermal stability of the films. But incorporation of clay and crosslinking with epichlorohydrin enhanced the steric crowding and lowered the thermal stability of the films.  相似文献   
103.
In developed countries, ecological restoration is a widely accepted practice to restore the productivity of degraded coal mine spoils and prevent mine‐degraded sites from acting as sources of pollution. During the past decade, ecologists realized the global need for ecological restoration, and the benefit of restoration is now assessed on the basis of ecosystem services that the restored lands can provide. In this article, the knowledge gap between crude reclamation and ecological restoration is examined, the steps crucial to ecological restoration in tropical conditions are identified, and simple guidelines are given for easy understanding. Restoration issues, such as modification of the forestry restoration approach, reestablishment of biodiversity, removal and reuse of topsoil during progressive and final stages of ecological restoration, drainage, promotion of a plant‐succession‐based approach, use of a grass–legume mixture as an initial colonizer, stabilization of steep slopes, and soil blanketing, are discussed. Those attributes of a degraded ecosystem that are responsible for the success of any restoration project are critically examined, and the opportunities provided by ecological restoration are explored.  相似文献   
104.
Two biodegradable polyesters, poly(butylene adipate-co-terephthalate) (PBAT) and poly(butylene succinate) (PBS) were melt-compounded in a twin screw extruder to fabricate a novel PBS/PBAT blend. The compatibility of the blend was attributed to the transesterification reaction that was confirmed by Fourier transform infrared spectroscopy. The Gibbs free energy equation was applied to explain the miscibility of the resulting blend. Dynamic mechanical analysis of the blends exhibits an intermediate tanδ peak compared to the individual components which suggests that the blend achieved compatibility. One of the key findings is that the tensile strength of the optimized blend is higher than each of the blended partner. Rheological properties revealed a strong shear-thinning tendency of the blend by the addition of PBAT into PBS. The phase morphology of the blends was observed through scanning electron microscopy, which revealed that phase separation occurred in the blends. The spherulite growth in the blends was highly influenced by the crystallization temperature and composition. In addition, the presence of a dispersed amorphous phase was found to be a hindrance to the spherulite growth, which was confirmed by polarizing optical microscopy. Furthermore, the increased crystallization ability of PBAT in the blend systems gives the blend a balanced thermal resistance property.  相似文献   
105.
This research paper provides a brief discussion about the relevance of third generation biodiesel co-products diversification. This diversification can be performed through the utilization of residual microalgal biomass (RMB) after oil extraction process. The present work analyses the use of RMB as potential filler for biocomposite production by means of understanding the chemical composition, the thermal stability as well as the protein content of RMB. Thermogravimetric analysis revealed the processing window of the RMB for biocomposite production and its dependence on its purity, especially on residual fat content. Biocomposites of RMB and poly(butylene succinate) (PBS) were prepared by melting processing technique using extrusion followed by injection-molding. Tensile, flexural and impact properties of the processed samples were evaluated. Scanning electron microscopy of fractured sections of the biocomposites was also used to examine the dispersion of RMB in PBS matrix. Finally, this study shows a competitive alternative to produce PBS-RMB biocomposites by replacing PBS by RMB in the range between 20 and 30 %. However, further studies are necessary to improve the compatibility of RMB with PBS to obtain competitive mechanical properties, compared to neat materials through, for instance, block co-polymers.  相似文献   
106.
Municipal solid wastes (MSW) are unavoidable sources of environmental pollution. Improper disposal of municipal waste results in the leaching of toxic metals and organic chemicals, which can contaminate the surface and ground water leading to serious health hazard. In this study, the toxic effects of the leachate prepared from municipal solid waste samples were examined in root meristem cells of barley (Hordeum vulgare L.) at various stages of cell cycle, i.e., G1, S, and G2. Seeds of barley were exposed to 2.5, 5, and 10 % of leachates in soil and aqueous media in 48 h at different cell cycle stages. The physicochemical data of the present study revealed that municipal solid waste leachate contains high amount of heavy metals, which significantly affected growth and physiological activities of barley. Significant inhibition in hypocotyl length, germination, and mitotic index were observed at all concentration of leachate treatment. Induction of chromosomal aberrations (CA’s) and micronuclei (MN) formation were also observed with different concentrations of leachate treatment at 7, 17, and 27 h of presoaking durations, which falls in G1, S, and G2 phase of the cell cycle, respectively. Also, exposure of leachate at S phase of the cell cycle had significant effects in barley through chromosomal aberration and micronuclei formation.  相似文献   
107.
This paper aims at analyzing the feasibility of a waste heat recovery power generation plant based on parametric optimization and performance analysis using different organic Rankine cycle configurations and heat source temperature conditions with working fluid R-12, R-123, R-134a, and R-717. A parametric optimization of turbine inlet temperature(TIT) was performed to obtain the irreversibility rate, system efficiency, availability ratio, turbine work output, system mass flow rate, second-law efficiency, and turbine outlet quality, along the saturated vapor line and also on superheating at an inlet pressure of 2.50 MP in basic as well as regenerative organic Rankine cycle. The calculated results reveal that selection of a basic organic Rankine cycle using R-123 as working fluid gives the maximum system efficiency, turbine work output, second-law efficiency, availability ratio with minimum system irreversibility rate and system mass flow rate up to a TIT of 150°C and appears to be a choice system for generation of power by utilizing the flue gas waste heat of thermal power plants and above 150°C the regenerative superheat organic Rankine cycle configuration using R 123 as working fluid gives the same results.  相似文献   
108.
This study characterizes the exposure of a typical Indian Institute of Technology Kanpur student to particulate matter and gaseous co-pollutants like carbon monoxide, volatile organic compounds, and nitrogen dioxide in various microenvironments, within and outside the college campus. Chemical analysis of filter, used for the particulate matter measurement, was also carried out to determine the concentration of various elements such as Ca, Cd, Cr, Cu, Fe, Mg, Pb, Zn, and anions like F?, Cl?, NO3 ?, and SO4 2?. Furthermore, time activity diary along with temperature data was maintained for the precise evaluation and analysis of results for various microenvironments. The results showed PM10 and PM2.5 concentrations to be higher at some outdoor microenvironments, particularly near the Ganga riverbank. From the chemical analysis, concentrations of chloride and fluoride were found higher in indoor microenvironments as compared to outdoors. Also, nitrate concentrations were quite higher within the laboratory premises. Concentrations of Ca, Fe, and Mg were significant outdoors, whereas Na, Ca, Fe, and K were prominent indoors. The study highlights the real-time personal exposure of a student cohort to various toxic pollutants typically found within their breathing levels and their potential sources both indoors and outdoors.  相似文献   
109.
Ground level ozone is responsible for the formation ofsmog, and for a variety of adverse effects on bothhuman and plant life. High concentrations of groundlevel ozone occur during the summer months. This paperdescribes the development of a model to forecast themaximum daily concentration of ozone as a function ofthe maximum surface temperature, for ozonenon-attainment regions in Ohio. The model wasdeveloped by statistical analysis of existing data.Site-specific models were developed initially. Theverification and evaluation of the performancecriteria of the model at each site were explored bycomparing the model with an independent datasetcollected from that site. A generalized statewidemodel was developed from the site-specific models. Theperformance criteria of this model were verified andevaluated by employing the same independent datasetsemployed for the site-specific models. An exceedencemodel to predict the occurrence of ozone exceedencesover 100 ppb has also been presented.  相似文献   
110.
Excessive nitrogen (N) and phosphorous (P) release into run-off waters from human activities is a major cause of eutrophication. Several techniques are available to remove N and P-containing pollutants, such as chemical precipitation, biological treatment, membrane processes, electrolytic treatment, ion-exchange and adsorption. In order to remove low concentration levels of nitrate and phosphate, adsorption is a cost-effective solution. In this review, we present a list of nanoscale adsorbents such as zero-valent metal, metal oxides/metal hydroxides, and carbon-based materials. We discuss their adsorption capacities, isotherms, kinetics and mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号