The aim of this work is to study the colour and chemical modifications of the surfaces in chestnut wood samples as a consequence of irradiating in a controlled environment. The changes were investigated by a new analytical approach by combining traditional techniques such as reflectance spectrophotometry in the visible range and Fourier transform infrared spectroscopy with new hyperspectral imaging, in order to obtain forecast models to describe the phenomenon. The statistical elaboration of the experimental data allowed to validate the measurements and to obtain models enabling to relate the investigated parameters; the elaboration of the hyperspectral images by chemometric methods allowed for studying the changes in the reflectance spectra. A result of great importance is the possibility to correlate the oxidation of wood chemical components with the colour change in a totally non-invasive modality. This result is particularly relevant in the field of cultural heritage and in general in the control processes of wooden materials. 相似文献
Discharge of organic waste results in high nutrient pollution of the water bodies which is a major menace to the environment. A high quantity of nutrients such as ammonia causes a reduction in the dissolved oxygen level and induces algal growth in the water bodies. Water quality models have been the tools to evaluate the rate at which streams can disperse the pollutants they receive. Many water quality models are flawed either because of their inadequacy to completely simulate the advection component of the pollutant transport, or because of the limited application of the models, due to inaccurate estimation of model parameters. The hybrid cell in series (HCIS) developed by Ghosh et al. (2004) has been able to overcome such difficulties associated with the mixing cell-based models. Thus, the current study focuses on developing an analytical solution for the pollutant transport of the ammonia concentration through the plug flow, the first and second well-mixed cells of the HCIS model. The HCIS model coupled with the first order kinetic equation for ammonia nutrient was developed to simulate the ammonia pollutant concentration in the water column. The ammonia concentration at various points along the river system was assessed by considering the effects of the transformation of ammonia to nitrite, the uptake of ammonia by the algae, the respiration rate of the algae and the input of benthic source to the ammonia concentration in the water column. The proposed model was tested using synthetic data, and the HCIS-NH3 model simulations for spatial and temporal variation of ammonia pollutant transport were analysed. The simulated results of the HCIS-NH3 model agreed with the Fickian-based advection-dispersion equation (ADE) for simulating ammonia concentration solved using an explicit finite difference scheme. The HCIS-NH3 model also showed a good agreement with the observed data from the Umgeni River, except during rainy periods. 相似文献
Environmental Science and Pollution Research - Pollution-induced community tolerance (PICT) has been used to demonstrate effects of sediment contamination on microbes and meiofauna. Our study... 相似文献
Regional Environmental Change - Increased dieback and mortality of “dark needle conifer” (DNC) stands (composed of fir (Abies sibirica), Siberian pine (Pinus sibirica) and spruce (Picea... 相似文献
There is concern about the hazard of acute residential CO exposures from portable gasoline-powered generators, which can result in death or serious adverse health effects in exposed individuals. To address this hazard, the U.S. Consumer Product Safety Commission has developed low CO emission prototype generators by adapting off-the-shelf emission control technologies onto commercially available generators. A series of tests was conducted to characterize the indoor CO concentrations resulting from portable generators operating in the attached garage of a research house under seven different test house/garage configurations. The tested generators include both unmodified and modified low CO emission prototypes. It was found that CO concentrations varied widely, with peak house CO concentrations ranging from under 10 ppm to over 10,000 ppm. The highest concentrations in the house resulted from operation of the unmodified generator in the garage with the garage bay door closed and the house access door open. The lowest concentrations resulted from operation of a modified low CO emission prototype in the garage with the garage bay door open and the house access door closed. These tests documented reductions of up to 98% in CO concentrations due to emissions from two low CO emission portable generators compared to a stock generator.
Implications: Improper portable generator use has caused 800 U.S. deaths in the past 14 years. Generators operated in attached garages can cause CO to quickly reach deadly levels. Two low-emission prototypes generators were tested and had CO emissions reduced by up to 98%. Low-emission generators can reduce the risk of consumer poisonings and deaths. 相似文献
The only documentation on the building downwash algorithm in AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model), referred to as PRIME (Plume Rise Model Enhancements), is found in the 2000 A&WMA journal article by Schulman, Strimaitis and Scire. Recent field and wind tunnel studies have shown that AERMOD can overpredict concentrations by factors of 2 to 8 for certain building configurations. While a wind tunnel equivalent building dimension study (EBD) can be conducted to approximately correct the overprediction bias, past field and wind tunnel studies indicate that there are notable flaws in the PRIME building downwash theory. A detailed review of the theory supported by CFD (Computational Fluid Dynamics) and wind tunnel simulations of flow over simple rectangular buildings revealed the following serious theoretical flaws: enhanced turbulence in the building wake starting at the wrong longitudinal location; constant enhanced turbulence extending up to the wake height; constant initial enhanced turbulence in the building wake (does not vary with roughness or stability); discontinuities in the streamline calculations; and no method to account for streamlined or porous structures.
Implications: This paper documents theoretical and other problems in PRIME along with CFD simulations and wind tunnel observations that support these findings. Although AERMOD/PRIME may provide accurate and unbiased estimates (within a factor of 2) for some building configurations, a major review and update is needed so that accurate estimates can be obtained for other building configurations where significant overpredictions or underpredictions are common due to downwash effects. This will ensure that regulatory evaluations subject to dispersion modeling requirements can be based on an accurate model. Thus, it is imperative that the downwash theory in PRIME is corrected to improve model performance and ensure that the model better represents reality. 相似文献
Flora of the still unchanged or slightly modified floodplains is particularly valuable. Such are the natural, periodically flooded riparian ecosystems within the Mid-Pripyat river valley in Belarus. Distinctive elements of that area are ‘periodic islands’, which arise from the most elevated parts of the riverbed during flooding and have a specific microtopography. The aim of the research was to recognize floristic composition and ecological conditions of the ‘islands.’ Noted plants were mainly photophilous, by clearly varied in soil moisture, acidity and fertility requirements. 相似文献
A study was made of the composition of wastes collected from the pipes of the stormwater drainage system of Sorocaba, SP, Brazil (600 thousand inhabitants). A total of 10 samples weighing at least 100 kg each were sorted into 19 items to determine the fraction that can be considered natural (earth/sand, stones, organic matter, and water, the latter determined after oven-drying the samples) and the anthropogenic fraction (the remaining 15 items, especially construction and demolition wastes and packaging). Soil/sand was found to be the main item collected (52.5 % dry weight), followed by the water soaked into the waste (24.3 %), which meant that all the other wastes were saturated in mud, whose contents varied from 6.4 % (glass) to 87.2 % (metalized plastics packaging). In general, 83 % of the collected wastes can be classified as “natural,” but the remaining 17 % represent 2,000 kg of the most varied types of wastes discarded improperly every day on the streets of the city. This is an alarming amount of wastes that may clog parts of the drainage systems, causing troubles for all the population (like flooding) and must be strongly considered in municipal solid wastes management and in environmental education programs. 相似文献