首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   331篇
  免费   4篇
  国内免费   7篇
安全科学   12篇
废物处理   9篇
环保管理   63篇
综合类   63篇
基础理论   73篇
环境理论   1篇
污染及防治   80篇
评价与监测   22篇
社会与环境   15篇
灾害及防治   4篇
  2022年   4篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   8篇
  2017年   11篇
  2016年   16篇
  2015年   12篇
  2014年   13篇
  2013年   30篇
  2012年   12篇
  2011年   23篇
  2010年   13篇
  2009年   15篇
  2008年   11篇
  2007年   19篇
  2006年   12篇
  2005年   19篇
  2004年   21篇
  2003年   16篇
  2002年   10篇
  2001年   9篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   4篇
  1988年   5篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1978年   2篇
  1977年   4篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1971年   1篇
  1969年   1篇
  1958年   1篇
排序方式: 共有342条查询结果,搜索用时 640 毫秒
211.
Nonpoint source (NPS) pollutants such as phosphorus, nitrogen, sediment, and pesticides are the foremost sources of water contamination in many of the water bodies in the Midwestern agricultural watersheds. This problem is expected to increase in the future with the increasing demand to provide corn as grain or stover for biofuel production. Best management practices (BMPs) have been proven to effectively reduce the NPS pollutant loads from agricultural areas. However, in a watershed with multiple farms and multiple BMPs feasible for implementation, it becomes a daunting task to choose a right combination of BMPs that provide maximum pollution reduction for least implementation costs. Multi-objective algorithms capable of searching from a large number of solutions are required to meet the given watershed management objectives. Genetic algorithms have been the most popular optimization algorithms for the BMP selection and placement. However, previous BMP optimization models did not study pesticide which is very commonly used in corn areas. Also, with corn stover being projected as a viable alternative for biofuel production there might be unintended consequences of the reduced residue in the corn fields on water quality. Therefore, there is a need to study the impact of different levels of residue management in combination with other BMPs at a watershed scale. In this research the following BMPs were selected for placement in the watershed: (a) residue management, (b) filter strips, (c) parallel terraces, (d) contour farming, and (e) tillage. We present a novel method of combing different NPS pollutants into a single objective function, which, along with the net costs, were used as the two objective functions during optimization. In this study we used BMP tool, a database that contains the pollution reduction and cost information of different BMPs under consideration which provides pollutant loads during optimization. The BMP optimization was performed using a NSGA-II based search method. The model was tested for the selection and placement of BMPs in Wildcat Creek Watershed, a corn dominated watershed located in northcentral Indiana, to reduce nitrogen, phosphorus, sediment, and pesticide losses from the watershed. The Pareto optimal fronts (plotted as spider plots) generated between the optimized objective functions can be used to make management decisions to achieve desired water quality goals with minimum BMP implementation and maintenance cost for the watershed. Also these solutions were geographically mapped to show the locations where various BMPs should be implemented. The solutions with larger pollution reduction consisted of buffer filter strips that lead to larger pollution reduction with greater costs compared to other alternatives.  相似文献   
212.
The 2015–2016 El Niño had large impacts globally. The effects were not as great as anticipated in Kenya, however, leading some commentators to call it a ‘non-event’. Our study uses a novel combination of participatory Climate Vulnerability and Capacity Analysis tools, and new and existing social and biophysical data, to analyse vulnerability to, and the multidimensional impacts of, the 2015–2016 El Niño episode in southern coastal Kenya. Using a social-ecological systems lens and a unique dataset, our study reveals impacts overlooked by conventional analysis. We show how El Niño stressors interact with and amplify existing vulnerabilities to differentially impact local ecosystems and people. The policy significance of this finding is that the development of specific national capacities to deal with El Niño events is insufficient; it will be necessary to also address local vulnerabilities to everyday and recurrent stressors and shocks to build resilience to the effects of El Niño and other extremes in climate and weather.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01321-z) contains supplementary material, which is available to authorized users.  相似文献   
213.
Marine plastic pollution has emerged as one of the most pressing environmental challenges of our time. Although there has been a surge in global investment for implementing interventions to mitigate plastic pollution, there has been little attention given to the cost of these interventions. We developed a decision support framework to identify the economic, social, and ecological costs and benefits of plastic pollution interventions for different sectors and stakeholders. We calculated net cost as a function of six cost and benefit categories with the following equation: cost of implementing an intervention (direct, indirect, and nonmonetary costs) minus recovered costs and benefits (monetary and nonmonetary) produced by the interventions. We applied our framework to two quantitative case studies (a solid waste management plan and a trash interceptor) and four comparative case studies, evaluating the costs of beach cleanups and waste-to-energy plants in various contexts, to identify factors that influence the costs of plastic pollution interventions. The socioeconomic context of implementation, the spatial scale of implementation, and the time scale of evaluation all influence costs and the distribution of costs across stakeholders. Our framework provides an approach to estimate and compare the costs of a range of interventions across sociopolitical and economic contexts.  相似文献   
214.
215.
216.
The U.S. EPA’s Air and Energy Engineering Research Laboratory is responsible for assessing control technology performance and costs under the National Acid Precipitation Assessment Program. A major part of this assessment involves developing site-specific estimates of the performance and costs of retrofitting SO2 and NOx control technologies for the top 200 SO2- emitting (1980) coal-fired power plants in the 31-state eastern region. This effort includes detailed evaluation of a small number of plants (30 or less) representing a cross-section of the top 200 population. In cooperation with the states of Ohio and Kentucky (in conjunction with the U.S. EPA’s State Acid Rain Grant Program), efforts were undertaken to visit and conduct detailed evaluation of 12 coal-fired plants—five in Ohio, seven in Kentucky and the Tennessee Valley Authority System. A variety of commercial and advanced SO2 and NOx control technologies—including precombustion, combustion (in-furnace), and postcombustion (flue gas cleanup) technologies—were applied to each plant through conceptual designs. Retrofit factors (applied to the capital cost of a new pollution control system), cost “adders” (e.g., movement of existing equipment), and costs were developed for applying the control technologies to the boilers of each plant. Results of these and subsequent efforts will be valuable in evaluations of acid deposition control strategies by federal and state agencies and by electric utilities.  相似文献   
217.
218.
219.
The link between individual habitat selection decisions (i.e., mechanism) and the resulting population distributions of dispersing organisms (i.e., outcome) has been little-studied in behavioural ecology. Here we consider density-dependent habitat (i.e., host) selection for an energy- and time-limited forager: the mountain pine beetle (Dendroctonus ponderosae Hopkins). We present a dynamic state variable model of individual beetle host selection behaviour, based on an individual’s energy state. Field data are incorporated into model parameterization which allows us to determine the effects of host availability (with respect to host size, quality, and vigour) on individuals’ decisions. Beetles choose larger trees with thicker phloem across a larger proportion of the state-space than smaller trees with thinner phloem, but accept lower quality trees more readily at low energy- and time-states. In addition, beetles make habitat selection decisions based on host availability, conspecific attack densities, and beetle distributions within a forest stand. This model provides a framework for the development of a spatial game model to examine the implications of these results for attack dynamics of beetle populations.  相似文献   
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号