首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   545篇
  免费   8篇
  国内免费   3篇
安全科学   14篇
废物处理   10篇
环保管理   134篇
综合类   33篇
基础理论   167篇
污染及防治   129篇
评价与监测   54篇
社会与环境   6篇
灾害及防治   9篇
  2022年   4篇
  2020年   2篇
  2019年   6篇
  2018年   4篇
  2017年   10篇
  2016年   20篇
  2015年   4篇
  2014年   8篇
  2013年   54篇
  2012年   19篇
  2011年   28篇
  2010年   20篇
  2009年   24篇
  2008年   32篇
  2007年   23篇
  2006年   32篇
  2005年   14篇
  2004年   30篇
  2003年   23篇
  2002年   16篇
  2001年   13篇
  2000年   8篇
  1999年   10篇
  1998年   13篇
  1997年   11篇
  1996年   5篇
  1995年   7篇
  1994年   12篇
  1993年   12篇
  1992年   7篇
  1991年   3篇
  1990年   4篇
  1989年   5篇
  1988年   10篇
  1987年   5篇
  1986年   2篇
  1985年   3篇
  1984年   7篇
  1983年   7篇
  1982年   8篇
  1981年   4篇
  1980年   7篇
  1979年   5篇
  1978年   3篇
  1977年   3篇
  1974年   2篇
  1971年   1篇
  1968年   1篇
  1954年   1篇
  1930年   1篇
排序方式: 共有556条查询结果,搜索用时 406 毫秒
511.
This risk assessment on vinyl chloride was carried out specifically for the marine environment, according to the methodology laid down in the European Union (EU) risk assessment Regulation (1488/94) and the Technical Guidance Documents for New and Existing Substances (TGD, 1996). Vinyl chloride is used for the production of polyvinyl chloride (PVC). The study consisted of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programmes in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the Predicted Exposure Concentration (PEC) and the Predicted No-Effect Concentration (PNEC) for the marine aquatic environment. In total 6 studies for fish, 3 studies for invertebrates and one for algae have been evaluated. The appropriate assessment factors have been used to calculate a PNEC of 210 microg/l based on short-term exposure. For coastal waters and estuaries a worst case PEC of 0.15 microg/l is derived. For river waters a typical and worst case PEC of <0.008 and 0.4 microg/l is derived, respectively. These concentrations, which do not take into account any dilution within the sea, correspond to safety margins from 500 to 250,000 between the aquatic effect and the exposure concentration. Vinyl chloride is not a 'toxic, persistent and liable to bioaccumulate' substance sensu the Oslo and Paris Conventions for the Prevention of Marine Pollution (OSPAR-DYNAMEC). It can be concluded that the present use of vinyl chloride does not present a risk to the marine aquatic environment.  相似文献   
512.
We assessed the effects on fish of lead (Pb) released to streamsby smelters located in Trail, BC (Canada), E. Helena, MT, Herculaneum, MO, and Glover, MO. Fish were collected by electrofishing from sites located downstream of smelters and from reference sites. Blood from each fish was analyzed for -aminolevulinic acid dehydratase (ALAD) activity and hemoglobin (Hb), and samples of blood, liver, or carcass were analyzed for Pb, zinc (Zn), or both. Fish collected downstreamof all four smelters sites had elevated Pb concentrations, decreased ALAD activity, or both relative to their respectivereference sites. At E. Helena, fish from the downstream site also had lower Hb concentrations than fish from upstream. Differences among taxa were also apparent. Consistent with previous studies, ALAD activity in catostomids (Pisces: Catostomidae-northern hog sucker, Hypentelium nigricans;river carpsucker, Carpiodes carpio; largescale sucker, Catostomus macrocheilus; and mountain sucker, C. platyrhynchus) seemed more sensitive to Pb-induced ALAD inhibition than the salmonids (Pisces: Salmonidae-rainbow trout,Oncorhynchus mykiss; brook trout, Salvelinus fontinalis) or common carp (Cyprinus carpio). Some of these differences may have resulted from differential accumulation of Zn, which was not measured at all sites. We detected no ALAD activity in channel catfish (Ictaluruspunctatus) from either site on the Mississippi River at Herculaneum, MO. Our findings confirmed that Pb is releasedto aquatic ecosystems by smelters and accumulated by fish, andwe documented potentially adverse effects of Pb in fish. We recommend that Zn be measured along with Pb when ALAD activityis used as a biomarker and the collection of at least 10 fish ofa species at each site to facilitate statistical analysis.  相似文献   
513.
The new European Directive for water intended for human consumption has established a regulatory level for bromate at 10 microg L(-1). This Maximum Admissible Concentration requires analytical methods with detection limits of a least 2.5 microg L(-1). A project funded by the Standards, Measurements and Testing Programme of the European Commission has enabled the improvement and/or development of methods for the determination of bromate at such concentration levels. This collaborative work was concluded by the organisation of an interlaboratory trial involving 26 European laboratories, which enabled the testing of both a draft ISO Standard method and alternative methods. This paper presents the results of this interlaboratory trial, along with results of a bromate stability study. The progress made with respect to the analytical state-of-the-art for bromate will greatly benefit the quality of measurements carried out in water quality monitoring.  相似文献   
514.
This risk assessment on 1,1,1-trichloroethane was carried out specifically for the marine environment, accordingly to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Document of the EU New and Existing Substances Regulation (TGD, 1996). 1,1,1-trichloroethane is being phased out of most uses because of its ozone depletion potential (ODP) under the Montreal Protocol. Production for emissive uses has already been phased out end 1995 in Europe and 1996 in the United States, Japan and other industrial countries. The risk assessment study consists of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programmes in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the Predicted Environmental Concentration (PEC) and the Predicted No-Effect Concentration (PNEC) for the marine aquatic environment. In total 14 studies for fish, 7 studies for invertebrates and 9 studies for algae have been evaluated. Both acute and chronic studies have been taken into account and the appropriate assessment factors have been used to calculate a PNEC value of 21 microg/l based on long term exposure. The PEC was derived from monitoring data. The PEC was set at 0.206 microg/l (worst case) and 0.024 microg/l (typical case) for coastal waters and estuaries and 0.6 microg/l (worst case) and <0.1 microg/l (typical case) for river waters. The calculated PEC/PNEC ratios, which do not take into account any dilution factor within the sea, correspond to a safety margin of 35 to 1000 between the aquatic effect and the exposure concentration. 1,1,1-trichloroethane is not a 'toxic, persistent and liable to bioaccumulate' substance according to the criteria as mentioned by the Oslo and Paris Conventions for the Prevention of Marine Pollution (OSPAR-DYNAMEC). It can be concluded that the present use of 1,1,1-trichloroethane does not present a risk to the marine aquatic environment.  相似文献   
515.
This risk assessment on 1,1,2-trichloroethane (T112) was carried out specifically for the marine environment, according to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Document of the EU New and Existing Substances Regulation (TGD, 1997). The study consists of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programs in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the "predicted environmental concentrations" (PEC) and the "predicted no effect concentrations" (PNEC) for the marine aquatic environment. In total, 22 studies for fish, 45 studies for invertebrates and 9 studies for algae have been evaluated. Both acute and chronic toxicity studies have been taken into account and the appropriate assessment factors have been used to define a PNEC value of 300 µg/l. Most of the available monitoring data apply to rivers and estuaries and were used to calculate PECs. The most recent data (1991-1995) support a typical PEC of 0.01 µg T112/l water and a worst case PEC of 5 µg T112/l water. The calculated PEC/PNEC ratios give a safety margin of 60 to 30,000 between the predicted no effect concentration and the exposure concentration. Additional evaluation of environmental fate and bioaccumulation characteristics showed that no concern is expected for food chain accumulation.  相似文献   
516.
This risk assessment on 1,2-dichloroethane (EDC) was carried out specifically for the marine environment, according to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Document of the EU New and Existing Substances Regulation (TGD, 1997). The study consists of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programs in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the "predicted environmental concentrations" (PEC) and the "predicted no effect concentrations" (PNEC) for the marine aquatic environment. In total, 21 studies for fish, 17 studies for invertebrates and 7 studies for algae have been evaluated. Both acute and chronic toxicity studies have been taken into account and the appropriate assessment factors have been used to define a PNEC value of 1100 µg/l. Most of the available monitoring data apply to rivers and estuaries and were used to calculate PECs. The most recent data (1991-1995) support a typical PEC of 0.5 µg EDC/l and a worst case PEC of 6.4 µg EDC/l. The calculated PEC/PNEC ratios give a safety margin of 170 to 2200 between the predicted no effect concentration and the exposure concentration. Additional evaluation of environmental fate and bioaccumulation characteristics showed that no concern is expected for food chain accumulation.  相似文献   
517.
This risk assessment on chloroform was carried out specifically for the marine environment, according to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Document of the EU New and Existing Substances Regulation (TGD, 1997). The study consists of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programs in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the "predicted environmental concentrations" (PEC) and the "predicted no effect concentrations" (PNEC) for the marine aquatic environment. In total, 23 studies for fish, 17 studies for invertebrates and 10 studies for algae have been evaluated. Both acute and chronic toxicity studies have been taken into account and the appropriate assessment factors have been used to define a typical PNEC value of 72 µg/l. Due to limitations of the studies evaluated, a worst PNEC of 1 µg/l could also be used. Most of the available monitoring data apply to rivers and estuaries and were used to calculate PECs. The most recent data (1991-1995) support a typical PEC of 0.2 µg chloroform per litre of water and a worst case PEC of 5 to 11.5 µg chloroform per litre of water. The calculated PEC/PNEC ratios give a safety margin of 6 to 360 between the predicted no effect concentration and the exposure concentrations. A worst case ratio, however, points to a potential risk for sensitive species. Refinement of the assessment is necessary by looking for more data. Additional evaluation of environmental fate and bioaccumulation characteristics showed that no concern is expected for food chain accumulation.  相似文献   
518.
This risk assessment on tetrachloroethylene (PER) was carried out specifically for the marine environment, according to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Document of the EU New and Existing Substances Regulation (TGD, 1997). The study consists of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programs in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the "predicted environmental concentrations" (PEC) and the "predicted no effect concentrations" (PNEC) for the marine aquatic environment. In total, 18 studies for fish, 13 studies for invertebrates and 8 studies for algae have been evaluated. Both acute and chronic toxicity studies have been taken into account and the appropriate assessment factors have been used to define a PNEC value of 51 µg/l. Most of the available monitoring data apply to rivers and estuary waters and were used to calculate PECs. The most recent data (1991-1995) support a typical PEC of 0.2 µg PER/l water and a worst case PEC of 2.5 µg PER/l water. The calculated PEC/PNEC ratios give a safety margin of 20 to 250 between the predicted no effect concentration and the exposure concentration. Additional evaluation of environmental fate and bioaccumulation characteristics showed that no concern is expected for food chain accumulation.  相似文献   
519.
It is widely acknowledged that the poorest sections of society bear a disproportionate burden of poor environmental quality, including toxicity and pollution. The struggles to address environmental injustice instigated at grassroots level also place the burden of righting the injustice on those who often have the least resources in terms of time, money and access to decision makers. The unfolding story of BAN Waste's sophisticated challenge to the proposed building of a replacement incinerator in a working-class area of Newcastle demonstrates many of the issues and stages common to struggles for environmental justice. The struggle became proactive and built wider alliances and a broad coalition across the city for change. The eventual success in preventing the incinerator being built and in producing a superior waste strategy counters the popular belief that environmental concerns are predominantly those of the middle class.  相似文献   
520.
A watershed management framework for mountain areas is based on lessons learned from watershed management experience, social and institutional learning, and the use of a watershed management program evaluation in Nepal. The lessons led to the adoption of a subwatershed-based ecosystem approach based on local participation at the subwatershed level. An integrated watershed management framework (IWMF) consisting of eight steps with three checklists was developed focusing on improvement-oriented adaptive management. The eight steps lead to the preparation of a watershed management plan. In the process three checklists are used. While the first checklist has general questions pertaining to watershed analysis, the second allows participation analysis of stakeholders in terms of their strengths, weaknesses, opportunities and threats and opens up new prospects for further reinforcing or building new user group institutions based on consensus. The final checklist consists of hierarchical watershed management objectives, including goals, results and activities leading to a program planning matrix. The framework was applied to watershed planning in the Chure Region to compare the framework-based planning with conventional planning procedures. A significant difference in quality and substance of the output, with and without the use of the framework, suggests that an integrated framework is a useful tool for an ecosystem-based approach to natural resource management and socio-technical conservation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号