首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
环保管理   8篇
综合类   1篇
基础理论   9篇
污染及防治   9篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2020年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2009年   3篇
  2007年   3篇
  2005年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
11.
Vertical profiles of carbon monoxide (CO) over the Indian region have scarcely been monitored. Satellite sensor, Measurement Of Pollution In The Troposphere (MOPITT) provides profiles of CO using a global retrieval scheme, which converts measured radiances to CO mixing ratios. In this study we have developed a regional retrieval scheme, valid over the Indian region, which employs Line-By-Line (LBL) calculations over a tropical model atmosphere to generate a Look-Up-Table (LUT) forward model function and uses a regional a priori dataset of CO along with seasonally variable emissivity to invert the MOPITT radiances to CO profiles. This baseline study provides an approach to optimizing retrievals for specific regional applications. A case study was carried out over a forest fire prone region in Northern India from February to April 2005 to validate the retrieval algorithm. The results are in agreement with the fire maps generated from MODerate resolution Imaging Spectro-radiometer (MODIS). The shape of the CO profiles over the region matches quite well with the vertical structure of CO during the INDOEX campaign, especially during the polluted month of April. Inter-comparisons with the MOPITT data product indicate some discrepancies in the lower troposphere, especially during the forest fire season. Future studies with in-situ measurements may be able to diagnose these disparities.  相似文献   
12.
13.
ABSTRACT

To understand the temporal variations of the physicochemical characteristics of the Bhagirathi-Hooghly River (BHR), three locations representing three districts of West Bengal were selected. The material fluxes from 34 drains during pre-monsoon season was quantified. The analysis of variance (ANOVA) revealed that no significant spatial variations were observed for the physicochemical parameters, whereas seasonal variations were significant. The mean discharge was found to be highest (247.2?×?103?m3?d?1) in the midstream drains. Highest mean concentrations of dissolved oxygen (DO) (7.35?mg?L?1) and nitrate (0.81?mg?L ?1) were observed during the post-monsoon season followed by the monsoon and pre-monsoon. According to the BIS, WHO and the European standard of water quality (pH, 6.5–8.5; Nitrate, 0–2.5?mg?L?1;DO, ≥5?mg?L?1), the results of the respective parameters revealed the BHR system is maintained at high to good water quality, meaning that the BHR system is slightly altered from its pristine environment. The mean concentrations of biological and chemical oxygen demands were found to be high during the monsoon season, revealing that a large quantity of refractory organic matter is transported to the eastern Bay of Bengal from the Ganges.  相似文献   
14.
15.
Industrialization and excessive use of pesticides for boosting agricultural production have adversely affected the ecosystem, polluting natural water reserves. Remediation of contaminated water has been an area of concern with numerous techniques being applied to improve the quality of naturally available water to the level suitable for human consumption. Most of these methods, however, generate by-products that are sometimes toxic. Heterogenous photocatalysis using metal oxide nanostructures for water purification is an attractive option because no harmful by-products are created. A discussion on possible methods to engineer metal oxides for visible light photocatalysis is included to highlight the use of solar energy for water purification. Multifunctional photocatalytic membranes are considered advantageous over freely suspended nanoparticles due to the ease of its removal from the purified water. An overview of water remediation techniques is presented, highlighting innovations through nanotechnology for possible addressing of problems associated with current techniques.  相似文献   
16.
With the rise in the global population, the demand for increased supply of food has motivated scientists and engineers to design new methods to boost agricultural production. With limited availability of land and water resources, growth in agriculture can be achieved only by increasing productivity through good agronomy and supporting it with an effective use of modern technology. Advanced agronomical methods lay stress not only on boosting agricultural produce through use of more effective fertilizers and pesticides, but also on the hygienic storage of agricultural produce. The detrimental effects of modern agricultural methods on the ecosystem have raised serious concerns amongst environmentalists. The widespread use of persistent pesticides globally over the last six decades has contaminated groundwater and soil, resulting in diseases and hardships in non-target species such as humans and animals. The first step in the removal of disease causing microbes from food products or harmful contaminants from soil and groundwater is the effective detection of these damaging elements. Nanotechnology offers a lot of promise in the area of pollution sensing and prevention, by exploiting novel properties of nanomaterials. Nanotechnology can augment agricultural production and boost food processing industry through applications of these unique properties. Nanosensors are capable of detecting microbes, humidity and toxic pollutants at very minute levels. Organic pesticides and industrial pollutants can be degraded into harmless and often useful components, through a process called photocatalysis using metal oxide semiconductor nanostructures. Nanotechnology is gradually moving out from the experimental into the practical regime and is making its presence felt in agriculture and the food processing industry. Here we review the contributions of nanotechnology to the sensing and degradation of pollutants for improved agricultural production with sustainable environmental protection.  相似文献   
17.
A state-wise assessment of methane (CH(4)) budget for Indian paddies, based on a decadal measurement data across India is presented for the calendar year (CY) 1994, the base year for India's Initial National Communication (NATCOM) to the United Nations Framework Convention on Climate Change (UNFCCC), along with national trend from CY 1979 to 2006. The NATCOM CH(4) emission factors (EFs) for Indian paddy cultivation areas, generally having less than 0.7% of soil organic carbon (SOC), have been estimated as 17.48+/-4 g m(-2) for irrigated continuously flooded (IR-CF), 6.95+/-1.86 g m(-2) for rain-fed drought prone (RF-DP), 19+/-6 g m(-2) for rain-fed flood prone (RF-FP) and deep-water (DW), 6.62+/-1.89 g m(-2) for irrigated intermittently flooded single aeration (IR-IF-SA) and 2.01+/-1.49 g m(-2) for IR-IF multiple aeration (MA) paddy water regimes. The state-wise study for 1994 has indicated national CH(4) budget estimate of 4.09+/-1.19 Tg y(-1) and the trend from 1979 to 2006 was in the range of 3.62+/-1 to 4.09+/-1.19 Tg y(-1). Four higher emitting or "hot spot" states (West Bengal, Bihar, Madhya Pradesh and Uttar Pradesh) have accounted for 53.9% of total CH(4) emission with RF-FP paddy water regime as the major contributor. CH(4) emissions were enhanced by factors such as SOC ( approximately 1.5 times due to increase in SOC by approximately 1.8 times), paddy cultivars (approximately 1.5 times), age of seedlings (approximately 1.4 times), and seasons (approximately 1.8 times in Kharif or monsoon than in Rabi or winter season).  相似文献   
18.
Spiromesifen (Oberon) is a new insecticide and miticide of chemical class ketoenol active against white flies (Bemisia spp., Trialeuroides spp.) and spider mites (Tetranychus and Panonychus spp.). Due to its potential significance in insect resistance management, it is important to establish its behaviour on crop and environment. In the present study, the degradation/dissipation of spiromesifen on tea crop under tropical environmental conditions was studied and its DT(50) (t(1/2)), and DT(90) (time to reduce to 90% of the initial value) were estimated. Spiromesifen was sprayed on tea crop after first rain flush at four different locations @ 96 and 192ga.i.ha(-1). Samples of tea leaves were drawn at 0, 1, 3, 5, 7, 10, 15, 21 and 30 days after treatment and that of soil at 10 days after treatment and at harvest from 0 to 15 and 15 to 30cm layers. After crude extraction of tea leaves for spiromesifen residues with acetone:water, the contents were partitioned with cyclohexane:ethyl acetate and cleaned up on Florosil column. Soil residues were also extracted similarly. Quantification of residues was done on GC-MS in Selected Ion Monitoring (SIM) mode in mass range 271-274m/z. The LOQ of this method was found to be 0.05microgg(-1) while LOD being 0.015microgg(-1). The DT(50) of spiromesifen when applied at recommended doses in tea leaves was found to be 5.0-8.5 days. Ninety-nine percent degradation was found to occur within 33-57 days after application. In soil, no residues of spiromesifen were detectable 10 days after treatment.  相似文献   
19.
The Ganges River dolphin (Platanista gangetica Roxburgh) of Subansiri River may be in great danger of extinction due to the construction of the 2,000-MW Lower Subansiri Hydroelectric Project, which started in 2006. A recent survey indicates that there are now 29 Ganges dolphins, up from 21 in 2006. It is feared that drastic changes would occur in the downstream hydrology and ecology of the Subansiri River after the installation of the project, scheduled for 2012. The water discharge during a major part of the day in dry months would come down to a meager 6 cumecs from the present average of 450 cumecs (1 cumec is shorthand for cubic meter per second; also cms, or m3/s (m3s–1). Riverine mega fauna like the dolphin would be worst hit by this extremely low discharge. Dumping of an extra amount of sediment from different construction phases has already increased sediment load in the Subansiri downstream and degraded some earlier pockets of dolphin up to 20 km below the dam site. There is reason to believe that high sediment influx might have silted up some of the deeper pools downstream, a preferred habitat of dolphins, forcing them to congregate close to the confluence of the Subansiri.  相似文献   
20.
Environmental Chemistry Letters - To achieve the goal of green chemistry and sustainable development, catalyst-free reactions and use of naturally abundant resources are gaining importance. In last...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号