首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   7篇
安全科学   6篇
废物处理   6篇
环保管理   18篇
综合类   3篇
基础理论   32篇
污染及防治   20篇
评价与监测   6篇
社会与环境   10篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   6篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   12篇
  2012年   3篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   6篇
  2007年   3篇
  2006年   6篇
  2005年   5篇
  2004年   5篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1991年   1篇
  1988年   1篇
  1982年   1篇
  1981年   4篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
61.
Abstract

More stringent controls on the quality of wastewater discharges have given rise to increasing volumes of sewage sludge for disposal, principally to land, using either land-spreading or sludge-to-landfill operations. Current sludge-to-landfill methods generally involve mixing the concentrated sludge with other solid waste in municipal landfills. However, stricter waste disposal legislation and higher landfill taxes are forcing the water industry to look for more efficient disposal strategies. Landfill operators are also increasingly reluctant to accept sludge material in the slurry state because of construction difficulties and the potential for instability of the landfill slopes. The engineering and drying properties of a municipal sewage sludge are presented and applied, in particular, to the design, construction, and performance of sewage sludge monofills. Sludge handling and landfill construction are most effectively conducted within the water content range of 85% water content, the optimum water content for standard proctor compaction, and 95% water content, the sticky limit of the sludge material. Standard proctor compaction of the sludge within this water content range also achieves the maximum dry density of ~0.56 tonne/m3, which maximizes the storage capacity and, hence, the operational life of the landfill site. Undrained shear strength-water content data (pertinent to the stability of the landfill body during construction) and effective stress-strength parameters, which take into account the landfill age and the effects of ongoing sludge digestion, are presented. Landfill subsidence, which occurs principally because of creep and decomposition of the solid organic particles, is significant and continues indefinitely but at progressively slower rates.  相似文献   
62.
While various energy-producing technologies have been analyzed to assess the amount of energy returned per unit of energy invested, this type of comprehensive and comparative approach has rarely been applied to other potentially limiting inputs such as water, land, and time. We assess the connection between water and energy production and conduct a comparative analysis for estimating the energy return on water invested (EROWI) for several renewable and non-renewable energy technologies using various Life Cycle Analyses. Our results suggest that the most water-efficient, fossil-based technologies have an EROWI one to two orders of magnitude greater than the most water-efficient biomass technologies, implying that the development of biomass energy technologies in scale sufficient to be a significant source of energy may produce or exacerbate water shortages around the globe and be limited by the availability of fresh water.  相似文献   
63.
64.
65.
We present a 576‐year tree‐ring‐based reconstruction of streamflow for northern Utah's Weber River that exhibits considerable interannual and decadal‐scale variability. While the 20th Century instrumental period includes several extreme individual dry years, it was the century with the fewest such years of the entire reconstruction. Extended droughts were more severe in duration, magnitude, and intensity prior to the instrumental record, including the most protracted drought of the record, which spanned 16 years from 1703 to 1718. Extreme wet years and periods are also a regular feature of the reconstruction. A strong early 17th Century pluvial exceeds the early 20th Century pluvial in magnitude, duration, and intensity, and dwarfs the 1980s wet period that caused significant flooding along the Wasatch Front. The long‐term hydroclimatology of northern Utah is marked by considerable uncertainty; hence, our reconstruction provides water managers with a more complete record of water resource variability for assessment of the risk of droughts and floods for one of the largest and most rapidly growing population centers in the Intermountain West.  相似文献   
66.
67.
ABSTRACT: The long-term effect of logging on low summer streamflow was investigated with a data set of 36 years. Hydrologic records were analyzed for the period 1953 and 1988 from Watershed (WS) 1 (clear-cut logged and burned), WS 2 (unlogged control), and WS 3 (25 percent patch-cut logged and burned) in the H. J. Andrews Experimental Forest, western Cascade Range, Oregon. These records spanned 9–10 years before logging, and 21–25 years after logging and burning. Streamfiows in August were the lowest of any month, and were unaffected by occasional heavy rain that occurred at the beginning of summer. August streamfiows increased in WS 1 compared to WS 2 by 159 percent following logging in WS 1, but this increase lasted for only eight years following the start of logging in 1962. Water yield in August for 1970–1988 observed from WS 1 was 25 percent less than predicted from the control (WS 2, ANOVA, p=0.032). Water yield in August increased by 59 percent after 25 percent of the area of WS 3 was patch-cut logged and burned in 1963. In contrast to WS 1, however, water yields from WS 3 in August were consistently greater than predicted for 16 years following the start of logging, through to 1978. For the 10 years, 1979–1988, water yield observed in August from WS 3 was not different than predicted from the control (WS 2, ANOVA, p-0.175). The contrasting responses of WS 1 and 3 to logging are thought to be the result of differences in riparian vegetation caused by different geomorphic conditions. A relatively wide valley floor in WS 1 allowed the development of hardwoods in the riparian zone following logging, but the narrow valley of WS 3 and limited sediment deposits prevented establishment of riparian hardwoods. Low streamflows during summer have implications for salmonid survival. Reduced streamflow reduces the amount of rearing habitat, thus increasing competition. Combined with high water temperatures, reduced streamflow can lead directly to salmonid mortality by driving salmonids from riffles and glides, and trapping them in drying pools. Low streamflow also increases oxygen depletion caused by leaves from riparian red alders.  相似文献   
68.
The Ceilcote ionizing wet scrubber installed on a refractory brick kiln was evaluated with tests involving particulate mass emission, particle size distribution, and opacity. The overall efficiency was 93% with an average outlet opacity of 8% on a 1.68 m (5.5 ft) path length. The average particle cut diameter of the scrubber is 0.5 microns with a theoretical power input of 67 W/am3 (2.5 hp/1000 acfm). The theoretical power requirement for the ionizing wet scrubber was 41 W/am3 (1.54 hp/1000 acfm). A cooling tower supplying chilled water to the prescrubber required an additional 26 W/am2 (0.96 hp/1000 acfm) for a total system input of 67 W/am3 (2.5 hp/1000 acfm). It is recommended that the scrubber be considered where practical for the removal of fine particulate matter.  相似文献   
69.
Orchid-fungus fidelity: a marriage meant to last?   总被引:1,自引:0,他引:1  
The characteristics of plant-mycorrhizae associations are known to vary in both time and space, but the ecological consequences of variation in the dynamics of plant-fungus interactions are poorly understood. For example, do plants associate with single fungi or multiple fungi simultaneously, and do the associations persist through a plant's lifetime or do plants support a succession of different fungi? We investigated these and other questions related to plant-fungus interactions in Goodyera pubescens, an evergreen terrestrial orchid of the eastern United States, that interacts with closely related fungi in the genus Tulasnella. Unlike the mycorrhizal associations of other plants, orchid-mycorrhizal associations only benefit the orchid, based on current evidence. Many terrestrial orchids have been found to associate with specific groups of fungi. This characteristic could potentially limit orchids to relatively narrow ranges of environmental conditions and may be a contributing factor in the decline of many orchids in the face of changing environmental conditions. We found that G. pubescens protocorms (developing embryos prior to leaf production) and adults associated with only one fungal individual at a time. The orchid-fungus association persists for years, but during a drought period that was associated with the death of many plants, surviving plants were able to switch to new fungal individuals. These results suggest that G. pubescens interacts with the same fungal partner during periods of modest environmental variation but is able to switch to a different fungal partner. We hypothesize that the ability to switch fungi allows G. pubescens to survive more extreme environmental perturbations. However, laboratory experiments suggest that switching fungi has potential costs, as it increases the risk of mortality, especially for smaller individuals. Our findings indicate that it is unlikely that switching fungi is a common way to improve tolerance of less severe environmental fluctuations and disturbances. These findings may have important implications for plant responses to severe climatic events or to more gradual environmental changes such as global warming.  相似文献   
70.
Odor intensity reveals a dose-effect relationship between inhaled odor and perceived odor sensation by the receptors, while odor concentration reflects the odor strength at the emission sources. The study reports significant improvements in experimental procedures in establishing the odor concentration-intensity (OCI) relationships using a newly developed digital olfactometer. The improvements in experimental procedures have been made to meet the requirements of both the VDI guideline 3882.1 and the European standard (EN13725). Several areas which could affect the reliability of the results have been identified in some similar studies. The latest digital olfactometer was calibrated automatically to ensure accurate and repeatable dilution ratios. Cross contamination has been eliminated through the instrument design and extensive cleaning procedures, making random presentation possible. Stringent panelist screening and continuous performance monitoring ensures consistent sensitivity of the panel. The extension of odor intensity category to temperature sensation gives a reference to assist judgments of perceived odor sensation. The DynaScent calculation method has simplified odor intensity calculation and can be applied to many odor samples. A total of 38 odor samples from three alumina refinery sites and two sewage treatment plants were collected for analysis. The results have confirmed the efficiency of the olfactometer. Distinct Odor Concentrations (DOCs) were calculated for each sample using both VDI and DynaScent methods. A student t test on two major odor types confirmed that there are no significant differences between two methods. The study has shown the DOCs for refinery odor and wastewater odor are in the range of 3.8-15.4 and 4.2-15.6 odor unit (OU)/m3 respectively. The study demonstrated that the improvements are critical in achieving reliable odor intensity measurement. This can lead to the setup of quantitative odor impact criteria for different industries and sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号