首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   975篇
  免费   32篇
  国内免费   8篇
安全科学   52篇
废物处理   43篇
环保管理   265篇
综合类   82篇
基础理论   258篇
环境理论   2篇
污染及防治   203篇
评价与监测   68篇
社会与环境   34篇
灾害及防治   8篇
  2023年   9篇
  2022年   16篇
  2021年   12篇
  2020年   6篇
  2019年   14篇
  2018年   20篇
  2017年   21篇
  2016年   28篇
  2015年   30篇
  2014年   27篇
  2013年   68篇
  2012年   58篇
  2011年   59篇
  2010年   39篇
  2009年   60篇
  2008年   68篇
  2007年   59篇
  2006年   57篇
  2005年   33篇
  2004年   45篇
  2003年   40篇
  2002年   35篇
  2001年   9篇
  2000年   15篇
  1999年   14篇
  1998年   14篇
  1997年   11篇
  1996年   14篇
  1995年   15篇
  1994年   18篇
  1993年   11篇
  1992年   9篇
  1991年   7篇
  1990年   5篇
  1989年   9篇
  1988年   5篇
  1987年   2篇
  1986年   3篇
  1985年   8篇
  1984年   4篇
  1983年   8篇
  1982年   8篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1971年   1篇
  1957年   2篇
排序方式: 共有1015条查询结果,搜索用时 15 毫秒
251.
The southeastern United States supports one of two large loggerhead turtle (Caretta caretta) nesting aggregations worldwide and is therefore critical to global conservation and recovery efforts for the species. Previous studies have established the presence of four demographically distinct nesting populations (management units) corresponding to beaches from (1) North Carolina through northeastern Florida, (2) peninsular Florida, (3) the Dry Tortugas, and (4) northwest Florida. Temporal and geographic genetic structure of the nesting aggregation was examined utilizing partial mitochondrial control region haplotype frequencies from 834 samples collected over the 2002 through 2008 nesting seasons from 19 beaches as well as previously published haplotype data. Most rookeries did not exhibit interannual genetic variation. However, the interannual variation detected did significantly impact the interpretation of spatial genetic structure in northeastern Florida. Based on pairwise F ST comparisons, exact tests of population differentiation, and analysis of molecular variance, the present study upholds the distinctiveness of the four currently recognized management units and further supports recognition of discrete central eastern, southern (southeastern and southwestern), and central western Florida management units. Further subdivision may be warranted, but more intensive genetic sampling is required. In addition, tools such as telemetry and mark-recapture are needed to complement genetic data and overcome limitations of genetic markers in resolving loggerhead turtle rookery connectivity in the southeastern USA.  相似文献   
252.
Detecting water quality improvements following watershed management changes is complicated by flow-dependent concentrations and nonlinear or threshold responses that are difficult to detect with traditional statistical techniques. In this study, we evaluated the long-term trends (1997-2009) in total P (TP) concentrations in the Illinois River of Oklahoma, and some of its major tributaries, using flow-adjusted TP concentrations and regression tree analysis to identify specific calendar dates in which change points in P trends may have occurred. Phosphorus concentrations at all locations were strongly correlated with stream flow. Flow-adjusted TP concentrations increased at all study locations in the late 1990s, but this trend was related to a change in monitoring practices where storm flow samples were specifically targeted after 1998. Flow-adjusted TP concentrations decreased in the two Illinois River sites after 2003. This change coincided with a significant decrease in effluent TP concentrations originating with one of the largest municipal wastewater treatment facilities in the basin. Conversely, flow-adjusted TP concentrations in one tributary increased, but this stream received treated effluent from a wastewater facility where effluent TP did not decrease significantly over the study period. Results of this study demonstrate how long-term trends in stream TP concentrations are difficult to quantify without consistent long-term monitoring strategies and how flow adjustment is likely mandatory for examining these trends. Furthermore, the study demonstrates how detecting changes in long-term water quality data sets requires statistical methods capable of identifying change point and nonlinear responses.  相似文献   
253.
Caruso, Brian S. and Joshua Haynes, 2011. Biophysical‐Regulatory Classification and Profiling of Streams Across Management Units and Ecoregions. Journal of the American Water Resources Association (JAWRA) 00(0):1‐22. DOI: 10.1111/j.1752‐1688.2010.00522.x Abstract: Aquatic resources management in the United States (U.S.) under Clean Water Act Section 404 has become more complex after recent Supreme Court decisions and U.S. Army Corps of Engineers and Environmental Protection Agency (USEPA) guidance. Many intermittent/ephemeral and headwater streams may not be jurisdictional if they lack a significant nexus with navigable waters. Streams in semiarid USEPA Region 8 were classified based on hydrologic permanence and stream order using National Hydrography Dataset (NHD) Plus and GIS to provide information across broad spatial scales to aid with jurisdictional determinations (JDs). Four classes were developed for profiling across management units and ecoregions. Based on medium‐resolution NHDPlus data, intermittent streams comprise >¾, and first order streams constitute >½ of the total stream length in Region 8. Mountain states and ecoregions have the largest percentage of perennial first order streams, whereas the Dakotas, plains, and desert ecoregions have the greatest percentages of intermittent first order and intermittent higher order streams. In the Upper Colorado River Basin, >50% of reaches are intermittent first order, and 9% are perennial first order. NHDPlus data can significantly underestimate the length of headwater and intermittent streams, but can still be a valuable tool to help develop stream classes and for regional JD planning and analysis. Refinement of the stream classes using high resolution NHD data and other key catchment parameters can improve their utility for JDs.  相似文献   
254.
Evidence of ecological impacts from pesticide runoff has prompted installation of vegetated treatment systems (VTS) along the central coast of California, USA. During five surveys of two on-farm VTS ponds, 88% of inlet and outlet water samples were toxic to Ceriodaphnia dubia. Toxicity identification evaluations (TIEs) indicated water toxicity was caused by diazinon at VTS-1, and chlorpyrifos at VTS-2. Diazinon levels in VTS-1 were variable, but high pulse inflow concentrations were reduced through dilution. At VTS-2, chlorpyrifos concentrations averaged 52% lower at the VTS outlet than at the inlet. Water concentrations of most other pesticides averaged 20-90% lower at VTS outlets. All VTS sediment samples were toxic to amphipods (Hyalella azteca). Sediment TIEs indicated toxicity was caused by cypermethrin and lambda-cyhalothrin at VTS-1, and chlorpyrifos and permethrin at VTS-2. As with water, sediment concentrations were lower at VTS outlets, indicating substantial reductions in farm runoff pesticide concentrations.  相似文献   
255.
A growing number of epidemiological studies conducted worldwide suggest an increase in the occurrence of adverse health effects in populations living, working, or going to school near major roadways. A study was designed to assess traffic emissions impacts on air quality and particle toxicity near a heavily traveled highway. In an attempt to describe the complex mixture of pollutants and atmospheric transport mechanisms affecting pollutant dispersion in this near-highway environment, several real-time and time-integrated sampling devices measured air quality concentrations at multiple distances and heights from the road. Pollutants analyzed included U.S. Environmental Protection Agency (EPA)-regulated gases, particulate matter (coarse, fine, and ultrafine), and air toxics. Pollutant measurements were synchronized with real-time traffic and meteorological monitoring devices to provide continuous and integrated assessments of the variation of near-road air pollutant concentrations and particle toxicity with changing traffic and environmental conditions, as well as distance from the road. Measurement results demonstrated the temporal and spatial impact of traffic emissions on near-road air quality. The distribution of mobile source emitted gas and particulate pollutants under all wind and traffic conditions indicated a higher proportion of elevated concentrations near the road, suggesting elevated exposures for populations spending significant amounts of time in this microenvironment. Diurnal variations in pollutant concentrations also demonstrated the impact of traffic activity and meteorology on near-road air quality. Time-resolved measurements of multiple pollutants demonstrated that traffic emissions produced a complex mixture of criteria and air toxic pollutants in this microenvironment. These results provide a foundation for future assessments of these data to identify the relationship of traffic activity and meteorology on air quality concentrations and population exposures.  相似文献   
256.
When conservation strategies require new, field‐based information, practitioners must find the best ways to rapidly deliver high‐quality survey data. To address this challenge, several rapid‐assessment approaches have been developed since the early 1990s. These typically involve large areas, take many months to complete, and are not appropriate when conservation‐relevant survey data are urgently needed for a specific locale. In contrast, bioblitzes are designed for quick collection of site‐specific survey data. Although bioblitzes are commonly used to achieve educational or public‐engagement goals, conservation practitioners are increasingly using a modified bioblitz approach to generate conservation‐relevant data while simultaneously enhancing research capacity and building working partnerships focused on conservation concerns. We term these modified events expert bioblitzes. Several expert bioblitzes have taken place on lands of conservation concern in Southern California and have involved collaborative efforts of government agencies, nonprofit organizations, botanic gardens, museums, and universities. The results of expert bioblitzes directly informed on‐the‐ground conservation and decision‐making; increased capacity for rapid deployment of expert bioblitzes in the future; and fostered collaboration and communication among taxonomically and institutionally diverse experts. As research and conservation funding becomes increasingly scarce, expert bioblitzes can play an increasingly important role in biodiversity conservation.  相似文献   
257.
Insect disturbance is often thought to increase fire risk through enhanced fuel loadings, particularly in coniferous forest ecosystems. Yet insect disturbances also affect successional pathways and landscape structure that interact with fire disturbances (and vice-versa) over longer time scales. We applied a landscape succession and disturbance model (LANDIS-II) to evaluate the relative strength of interactions between spruce budworm (Choristoneura fumiferana) outbreaks and fire disturbances in the Boundary Waters Canoe Area (BWCA) in northern Minnesota (USA). Disturbance interactions were evaluated for two different scenarios: presettlement forests and fire regimes vs. contemporary forests and fire regimes. Forest composition under the contemporary scenario trended toward mixtures of deciduous species (primarily Betula papyrifera and Populus spp.) and shade-tolerant conifers (Picea mariana, Abies balsamea, Thuja occidentalis), with disturbances dominated by a combination of budworm defoliation and high-severity fires. The presettlement scenario retained comparatively more "big pines" (i.e., Pinus strobus, P. resinosa) and tamarack (L. laricina), and experienced less budworm disturbance and a comparatively less-severe fire regime. Spruce budworm disturbance decreased area burned and fire severity under both scenarios when averaged across the entire 300-year simulations. Contrary to past research, area burned and fire severity during outbreak decades were each similar to that observed in non-outbreak decades. Our analyses suggest budworm disturbances within forests of the BWCA have a comparatively weak effect on long-term forest composition due to a combination of characteristics. These include strict host specificity, fine-scaled patchiness created by defoliation damage, and advance regeneration of its primary host, balsam fir (A. balsamea) that allows its host to persist despite repeated disturbances. Understanding the nature of the three-way interaction between budworm, fire, and composition has important ramifications for both fire mitigation strategies and ecosystem restoration initiatives. We conclude that budworm disturbance can partially mitigate long-term future fire risk by periodically reducing live ladder fuel within the mixed forest types of the BWCA but will do little to reverse the compositional trends caused in part by reduced fire rotations.  相似文献   
258.
259.
This research compares two existing methodologies, mixed trophic impact analysis and utility analysis, which use network analysis to evaluate the direct, pair-wise, and indirect, holistic, ecological relations between ecosystem compartments. The two approaches have many similarities, but differ in some key assumptions which affect both the final results and interpretations. Here, we briefly introduce both methodologies through a series of two simple examples; a 3-compartment competition model and a 3-compartment food chain model, and then apply the methodologies to a 15-compartment ecosystem model of the Chesapeake Bay. This example demonstrates how implementing the various conceptual and methodological assumptions lead to differing results. Notably, the overall number of positive relations is greatly affected by the treatment of the self-interactions and the handling of detritus compartments lead to a distinction between ecological or trophic relations. We recommend slight changes to both methodologies, not necessarily in order to bring them completely together, but because each has some points which are stronger and better defensible.  相似文献   
260.
Abstract: Taxonomic rank is an important criterion in assessing the conservation priority of an endangered organism: the sole member of a distinct family will generally receive a higher priority than a semi-isolated population in a polytypic species. When cryptic evolutionary partitions are discovered in endangered species, these findings are heralded as a positive step in the conservation process. The opposite action, demoting the taxonomic rank of an endangered organism, can be resisted by the conservation community because it is perceived as detrimental to preservation efforts. We explore the arguments for and against the species status of the endangered black turtle ( Chelonia agassizii ) and contribute an additional data set based on DNA sequences of single-copy nuclear loci. These data are concordant with previous mtDNA surveys in indicating no evolutionary distinction between C. agassizii and adjacent green turtle ( C. mydas ) populations. Although the black turtle is morphologically identifiable at a low level, much of its distinction is based on size and color differences that are highly variable throughout the range of C. mydas . Thus the black turtle would be more accurately classified at the subspecific or population level. There is no strong scientific case available to defend the species status of C. agassizii , and yet that designation has persisted for over a century. We suggest that the maintenance of this name is based on geographical and political considerations, and we propose a pragmatic category for this type of taxonomy: the geopolitical species . Furthermore, we argue against the practice of preserving species status for conservation purposes. There are several good reasons to preserve the black turtle, including morphological diversity and the possibility that it is an incipient evolutionary lineage with novel adaptations; taxonomic rank, however, is not one of them.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号