首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20333篇
  免费   180篇
  国内免费   200篇
安全科学   534篇
废物处理   986篇
环保管理   2421篇
综合类   2666篇
基础理论   5284篇
环境理论   4篇
污染及防治   5593篇
评价与监测   1650篇
社会与环境   1453篇
灾害及防治   122篇
  2023年   89篇
  2022年   213篇
  2021年   216篇
  2020年   139篇
  2019年   177篇
  2018年   326篇
  2017年   320篇
  2016年   524篇
  2015年   362篇
  2014年   573篇
  2013年   1744篇
  2012年   672篇
  2011年   859篇
  2010年   802篇
  2009年   785篇
  2008年   888篇
  2007年   977篇
  2006年   870篇
  2005年   717篇
  2004年   723篇
  2003年   704篇
  2002年   670篇
  2001年   911篇
  2000年   631篇
  1999年   393篇
  1998年   274篇
  1997年   246篇
  1996年   291篇
  1995年   270篇
  1994年   250篇
  1993年   233篇
  1992年   240篇
  1991年   208篇
  1990年   214篇
  1989年   219篇
  1988年   197篇
  1987年   158篇
  1986年   126篇
  1985年   138篇
  1984年   169篇
  1983年   153篇
  1982年   193篇
  1981年   134篇
  1980年   119篇
  1979年   152篇
  1978年   118篇
  1977年   107篇
  1976年   100篇
  1975年   83篇
  1974年   88篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
851.
Richter S  Nagel R 《Chemosphere》2007,66(4):603-610
The contribution of bioconcentration and biomagnification of 14C-terbutryn and 14C-benzo[a]pyrene via food and water to the bioaccumulation in Gammarus fossarum and Asellus aquaticus was investigated in single species-tests. In this investigation the uptake of 14C-terbutryn and 14C-benzo[a]pyrene via food and water by G. fossarum (L.) and A. aquaticus (L.) was examined. Bioconcentration factors (BCFs) and biomagnification factors (BMFs) were determined. Calculated BCFs were clearly higher than BMFs, indicating that water is the primary route of uptake. The uptake of terbutryn and benzo[a]pyren via water in G. fossarum and A. aquaticus is faster than uptake via food. The elimination and metabolism of the two chemicals by G. fossarum and A. aquaticus were studied. Terbutryn was eliminated almost completely in both species. In general, the elimination of terbutryn from G. fossarum and A. aquaticus was fast with half-life of 5 h. The elimination of terbutryn by G. fossarum after biomagnification is slower than after bioconcentration. No difference was found in elimination of terbutryn by A. aquaticus after biomagnification and after bioconcentration. Metabolites of terbutryn in G. fossarum and A. aquaticus were analyzed by HPLC. After the bioconcentration experiment a higher percentage of metabolites was found in G. fossarum than in A. aquaticus. This was confirmed for the experiment with uptake via food. The spectrum of metabolites was similar in both species, with hydroxyterbutryn being the major metabolism product in water. 14C-B[a]P could nearly completely be eliminated by G. fossarum (rest of activity 2%) after uptake via water. 14C-B[a]P could not be eliminated by G. fossarum and A. aquaticus after uptake via food. The metabolite could not be identified.  相似文献   
852.
The importance of the use of potassium in agriculture is increasing in South Asia for making most productive use of the nutrient in terms of economic returns. Nutrient supply traditionally by cattle manure is constrained by its insufficient availability. Municipal waste compost may be an alternative source of nutrient supplements. Field experiments were conducted at the Experimental Farm of Calcutta University, West Bengal, India during the wet seasons of 1997, 1998 and 1999 on flooded lowland rice. Potassium fractions in municipal waste compost and cattle manure were determined by sequential extraction and also the potassium uptake by rice to compare the effectiveness of municipal waste compost with traditional manure. Potassium was significantly bound to the organic matter in municipal waste compost. Potassium uptake by rice grain and straw increased significantly with the combined application of organics and fertilizers and it was higher in grain than in straw. Water-soluble and non-exchangeable potassium contents of municipal waste compost and cattle manure were highly correlated with the uptake of potassium by straw and grain. Exchangeable and residual potassium were also significantly correlated with the uptake of potassium by straw and grain of rice. Much higher uptake of K in rice straw and rain resulted from applying the manures in conjunction with fertilizers than when applied singly.  相似文献   
853.
The disposal of fly-ash (FA) from coal-fired power stations causes significant economic and environmental problems. Use of such contaminated sites for crop production and use of contaminated water for irrigation not only decreases crop productivity but also poses health hazards to humans due to accumulation of toxic metals in edible grains. In the present investigation, three rice cultivars viz., Saryu-52, Sabha-5204, and Pant-4 were grown in garden soil (GS, control) and various amendments (10%, 25%, 50%, 75% and 100%) of FA for a period of 90 days and effect on growth and productivity of plant was evaluated vis-a-vis metal accumulation in the plants. The toxicity of FA at higher concentration (50%) was reflected by the reduction in photosynthetic pigments, protein and growth parameters viz., plant height, root biomass, number of tillers, grain and straw weight. However, at lower concentrations (10-25%), FA enhanced growth of the plants as evident by the increase of studied growth parameters. The cysteine and non-protein thiol (NP-SH) content showed increase in their levels up to 100% FA as compared to control, however, maximum content was found at 25% FA in Saryu-52 and Pant-4 and at 50% FA in Sabha-5204. Accumulation of Fe, Si, Cu, Zn, Mn, Ni, Cd and As was investigated in roots, leaves and seeds of the plants. Fe accumulation was maximum in all the parts of plant followed by Si and both showed more translocation to leaves while Mn, Zn, Cu, Ni and Cd showed lower accumulation and most of the metal was confined to roots in all the three cultivars. As was accumulated only in leaves and was not found to be in detectable levels in roots and seeds. The metal accumulation order in three rice cultivars was Fe > Si > Mn > Zn > Ni > Cu > Cd > As in all the plant parts. The results showed that rice varieties Saryu-52 and Sabha-5204 were more tolerant and could show improved growth and yield in lower FA application doses as compared to Pant-4. Thus, Sabha-5204 and Saryu-52 are found suitable for cultivation in FA amended agricultural soils for better crop yields.  相似文献   
854.
Individual specimens of Salmo trutta were captured, from four sampling sites in Galician rivers (NW Spain) affected by different types of contamination: diffuse urban waste, run-off from an unrestored dump at a copper mine and waste from a fish farm. The ages of the captured trouts were established and only those belonging to the 1+ age class were selected for study. The liver and kidney were removed from each fish and analysed to determine the tissue concentrations of Cu, Fe and Zn. The results obtained showed that: (i) the use of 1+ individuals allowed differentiation of contamination scenarios on the basis of the tissue concentrations of metal; (ii) the use of 1+ individuals allowed standardization of the time of exposure, which was sufficiently long for differential uptake to have taken place; (iii) liver tissue provided the best results as, less effort was required than for processing kidney tissue, and significant differences between sampling sites were detected because the intrapopulational variability in metal levels was lower than for kidney, and (iv) the levels of elements detected were not affected by basal tissue concentrations or residual concentrations due to past contamination, which older trouts may have been exposed to. In addition, the use of 1+ trout may provide better results in annual environmental sampling surveys.  相似文献   
855.
Twenty four hours diel cycles of arsenic speciation in Acid Mine Drainage (AMD) due to photooxidation have been reported for the first time. AMD samples were taken during 48 h (31st March and 1st April, 2005) at 6 h intervals from the effluent of a massive abandoned polymetallic sulphide mine of the Iberian Pyrite Belt (Sw Spain). Samples were preserved in situ using cationic exchange prior to analysis by coupled high performance liquid chromatography, hydride generation and atomic fluorescence spectrometry (HPLC-HG-AFS) for arsenic speciation. The results indicated the presence of inorganic arsenic species with daily means of 262mugl(-1) for As(V) and 107 microg l(-1) for As(III). No marked diel trend was observed for As(V). However, a marked diel trend was observed for As(III) in the two studied days, with maximum concentrations during nighttime (141-143 microg l(-1)) and minimum concentrations at daytime (72-77 microg l(-1)). This difference in concentration during daytime and nighttime is ca. 100%. A similar diel cycle was observed for iron. An explanation for the arsenic diel cycles observed is the light induced photooxidation of As(III) and the elimination of As(V) due to its adsorption onto Fe precipitates during the daytime. Furthermore, the diel changes in arsenic speciation emphasize the importance of designing suitable sampling strategies in AMD systems.  相似文献   
856.
Gianotti V  Gosetti F  Polati S  Gennaro MC 《Chemosphere》2007,67(10):1993-1999
HPLC-DAD, HPLC-MS/MS, GC-MS and spectrophotometric methods are employed to investigate the degradation process of sodium 1-amino-5-naphthalene sulfonate (1A5NS) aqueous solutions, when exposed to sunlight and UV-lamp (254 nm) irradiations. Experimental results show that both sunlight and 254 nm UV-lamp irradiations destroy the chemical and give rise to major degradation products, characterised by the same m/z ratios. Degradation times are lower for sunlight irradiation, for which a t(1/2) value of 137.4 min has been evaluated, in comparison with the value of t(1/2) of 26.8 min, observed for UV-lamp irradiation. The degradation pathway and the structures of the degradation products are proposed.  相似文献   
857.
Two alternative, cost- and time-effective dioxin screening methods relying on two categories of potential lipid biomarkers were investigated. A dioxin range varying from 1.1 to 47.1 pg PCDD/F TEQ-WHO/g lipid using 64 fish meal samples was used for model calibration. The methods were based on multivariate models using either (1) fatty acid composition monitored by GC-FID or (2) fluorescence landscape signals analysed using the PARAFAC model and in both cases predicting dioxin content as pgPCDD/F TEQ-WHO/g lipid. In both cases, Partial Least Squares (PLS) regression was performed for predicting the dioxin content of a sample. The GC-FID data analyses was based on automatic peak alignment and integration, enabling extraction of the area of 140 peaks from the gas chromatograms, as opposed to the 31 fatty acids usually considered for fish oil characterisation. In addition to classic PLS employing the whole dataset for calibration, a two-step local PLS modeling approach was performed based upon an initial selection of k number of calibration samples providing the best match to the prediction sample using a so-called k Nearest Neighbors (kNN) approach, then followed by PLS calibration on these kNN selected samples for dioxin prediction. Fluorescence spectroscopy offers a promising non-invasive and ultra-rapid technique, with less than two minutes analysis time. However, fluorescence spectroscopy using the pattern recognition "kNN-PLS" yielded a correlation of 0.76 (r2) and a high root mean square error of prediction of 11.4 pg PCDD/F TEQ-WHO/g lipid. The predictions were improved when the PLS calibration was performed on all the sample with a root mean square error of prediction of 7.0 pg PCDD/F TEQ-WHO/g lipid. Unfortunately, these results failed to demonstrate the potential of fluorophore monitoring as a screening method. In contrast, the overall best screening performance was obtained with the fatty acid profile, when the kNN-PLS combination employed for pattern recognition (kNN) all the areas of the 140 detected peaks and the PLS regression used the areas of 46 selected peaks. This "kNN-PLS" prediction with three latent variables and based upon the 12 nearest neighbors selected out of the 64 x 2 fatty acid profiles (duplicate analyses), yielded a correlation of 0.85 (r2) and a root mean square error of prediction of 2.1 pg PCDD/F TEQ-WHO/g lipid and resulted in a total analysis time of one and half hour per sample.  相似文献   
858.
Amendment of agricultural soils with municipal sewage sludges provides a valuable source of plant nutrients and organic matter. Nevertheless, addition of heavy metals and risks of eutrophication continue to be of concern. Metal behaviour in soils and plant uptake are dependent on the nature of the metal, sludge/soil physico-chemical properties and plant species. A pot experiment was carried out to evaluate plant production and heavy metal uptake, soil heavy metal pools and bioavailability, and soil P pools and possible leaching losses, in agricultural soils amended with sewage sludge for at least 10 years (F20) compared to non-amended soils (control). Sewage sludge application increased soil pH, N, Olsen-extractable-P, DOC and exchangeable Ca, Mg and K concentrations. Total and EDTA-extractable soil concentrations of Cu and Zn were also significantly greater in F20, and soil metal (Cu, Mn and Zn) and P fractionation altered. Compared to the control, in F20 relative amounts of acid-extractable (Mn, Zn), reducible (Mn, Zn) and oxidisable (Cu, Zn) metal fractions were greater, and a dominance of inorganic P forms was observed. Analyses of F20 soil solutions highlighted risks of PO4 and Cu leaching. However, despite the observed increases in metal bioavailability sewage sludge applications did not lead to an increase in plant shoot concentrations (in wild plants or crop species). On the contrary, depending on the plant species, Mn and Zn tissue concentrations were within the deficiency level for most plants.  相似文献   
859.
Giari L  Manera M  Simoni E  Dezfuli BS 《Chemosphere》2007,67(6):1171-1181
Specimens of farmed European sea bass (Dicentrarchus labrax L., 1758) were exposed to different cadmium (Cd) concentrations (4.47, 5.63, 7.08 and 8.91 mg l(-1)) for 24 and 48 h. The effects of Cd on numbers of some cell types and structures (i.e., chloride cells, CCs; macrophage aggregates, MAs; rodlet cells, RCs) and on structure and ultrastructure of the main organs (gill, liver, intestine, kidney) were studied with routine process for light and transmission electron microscopy. Following cadmium exposure, the numbers of branchial CCs as well as intestinal and renal RCs increased significantly within 24h. Increase in metal concentration did not affect the magnitude of the numerical increment of the aforementioned cells. Moreover, in treated fish (24 and 48 h) the numbers of MAs in both head kidney and spleen were significantly higher than in control conspecifics, whilst the global area of MAs was less influenced by the acute treatment. In exposed sea bass, all the examined organs exhibited cellular modifications which appeared time- and dose-dependent. The gills showed telangectasia, lamellar fusion, oedema, epithelial lifting and leukocyte infiltration. In the liver, kidney and intestine acute cell swelling and vacuolization were common. Ultrastructurally the alterations observed frequently in hepatocytes, tubular epithelial cells and enterocytes included presence of numerous myelinoid bodies, damaged mitochondria, dilatation of endoplasmic reticulum, high number of lysosomes and autophagolysosomes. In intestinal and kidney tubular epithelia of treated fish, rodlet cells displayed some anomalies like dilatation of nuclear envelope, cytoplasmic vacuolization, presence of myelinoid bodies, rodlets degeneration and extensive discharge activity.  相似文献   
860.
Nair RR  Dhamole PB  Lele SS  D'Souza SF 《Chemosphere》2007,67(8):1612-1617
Denitrification of synthetic high nitrate waste containing 9032 ppm NO(3)-N (40,000 ppm NO(3)) in a time period of only 6h has been achieved in our previous study using activated sludge. The activated sludge culture was acclimatized by a stepwise increase in the nitrate concentration of synthetic waste. In the present work, studies were carried out on the changing microbial population of the sludge and the physiology of nitrate metabolism during the various stages of adaptation process to high strength synthetic nitrate waste. During the course of adaptation, with an increase in the nitrate concentration, a sharp increase in the number of denitrifiers was found with an equally rapid decrease in the nitrifying community. Two key enzymes involved in the first two steps of the denitrification process were also studied during this period. The results of the study suggest that specific enzyme levels increase as the activated sludge adapts itself to higher nitrate concentrations. Biological denitrification of high nitrate waste is a slow process and to increase the rate of denitrification, parameters such as pH, temperature, C:N and biomass concentration of the process were optimized using orthogonal array method. Optimized conditions increased the specific nitrate reduction rate by 54% and specific nitrite reduction rate by 45%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号