首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   744篇
  免费   11篇
  国内免费   5篇
安全科学   44篇
废物处理   31篇
环保管理   240篇
综合类   46篇
基础理论   159篇
污染及防治   146篇
评价与监测   61篇
社会与环境   27篇
灾害及防治   6篇
  2023年   3篇
  2022年   3篇
  2021年   3篇
  2020年   4篇
  2019年   6篇
  2018年   15篇
  2017年   15篇
  2016年   12篇
  2015年   19篇
  2014年   14篇
  2013年   57篇
  2012年   19篇
  2011年   34篇
  2010年   24篇
  2009年   26篇
  2008年   47篇
  2007年   27篇
  2006年   44篇
  2005年   33篇
  2004年   32篇
  2003年   31篇
  2002年   21篇
  2001年   23篇
  2000年   24篇
  1999年   12篇
  1998年   5篇
  1997年   12篇
  1996年   10篇
  1995年   10篇
  1994年   11篇
  1993年   14篇
  1992年   12篇
  1991年   9篇
  1990年   7篇
  1989年   7篇
  1988年   5篇
  1987年   9篇
  1986年   9篇
  1985年   9篇
  1984年   9篇
  1983年   9篇
  1982年   11篇
  1981年   8篇
  1980年   6篇
  1978年   7篇
  1977年   10篇
  1976年   3篇
  1975年   4篇
  1972年   3篇
  1971年   5篇
排序方式: 共有760条查询结果,搜索用时 15 毫秒
211.
This paper examines the effects of two different planetary boundary-layer (PBL) parameterization schemes – Blackadar and Gayno–Seaman – on the predicted ozone (O3) concentration fields using the MM5 (Version 3.3) meteorological model and the MODELS-3 photochemical model. The meteorological fields obtained from the two boundary-layer schemes have been used to drive the photochemical model to simulate O3 concentrations in the northeastern United States for a three-day O3 episodic period. In addition to large differences in the predicted O3 levels at individual grid cells, the simulated daily maximum 1-h O3 concentrations appear at different regions of the modeling domain in these simulations, due to the differences in the vertical exchange formulations in these two PBL schemes. Using process analysis, we compared the differences between the different simulations in terms of the relative importance of chemical and physical processes to O3 formation and destruction over the diurnal cycle. Finally, examination of the photochemical model's response to reductions in emissions reveals that the choice of equally valid boundary-layer parameterizations can significantly influence the efficacy of emission control strategies.  相似文献   
212.
This study presents a large-eddy simulation (LES) study of the convective boundary layer on August 1, 1999 over Philadelphia, PA during a summer ozone episode. The study is an evaluation of the Colorado State University's Regional Atmospheric Modeling System Version 4.3 (RAMS4.3) with the LES option using Northeast Oxidant and Particulate Study (NE-OPS) data. Simulations were performed with different imposed sensible heat fluxes at the ground surface. The model was initialized with the atmospheric sounding data collected at Philadelphia at 1230 UTC and model integrations continued till 2130 UTC. The resulting mean profiles of temperature and humidity obtained from the LES model were compared with atmospheric soundings, tethered balloon and aircraft data collected during the NE-OPS 1999 field campaign. Also the model-derived vertical profiles of virtual temperature were compared with NE-OPS Radio Acoustic Sounder System (RASS) data while the humidity profiles were compared with NE-OPS lidar data. The comparison of the radiosonde data with the LES model predictions suggests that the growth of the mixing layer is reasonably well simulated by the model. Overall, the agreement of temperature predictions of the LES model with the radiosonde observations is good. The model appears to underestimate humidity values for the case of higher imposed sensible heat flux. However, the humidity values in the mixing layer agree quite well with radiosonde observations for the case of lower imposed sensible heat flux. The model-predicted temperature and humidity profiles are in reasonable agreement with the tethered balloon data except for some small overestimation of temperature at lower layers and some underestimation of humidity values. However, the humidity profiles as simulated by the model agree quite well with the tethered balloon data for the case of lower imposed sensible heat flux. The model-predicted virtual temperature profile is also in better agreement with RASS data for the case of lower imposed sensible heat flux. The model-predicted temperature profile further agrees quite well with aircraft data for the case of lower imposed heat flux. However, the relative humidity values predicted by the model are lower compared with the aircraft data. The model-predicted humidity profiles are only in partial agreement with the lidar data. The results of this study suggest that the explicitly resolved energetic eddies seem to provide the correct forcing necessary to produce good agreement with observations for the case of an imposed sensible heat flux of 0.1 K m s–1 at the surface.  相似文献   
213.
Multiple mating by honeybee queens results in colonies of genotypically diverse workers. Recent studies have demonstrated that increased genetic diversity within a honeybee colony increases the variation in the frequency of tasks performed by workers. We show that genotypically diverse colonies, each composed of 20 subfamilies, collect more pollen than do genotypically similar colonies, each composed of a single subfamily. However, genotypically similar colonies collect greater varieties of pollen than do genotypically diverse colonies. Further, the composition of collected pollen types is less similar among genotypically similar colonies than among genotypically diverse colonies. The response threshold model predicts that genotypic subsets of workers vary in their response to task stimuli. Consistent with this model, our findings suggest that genotypically diverse colonies likely send out fewer numbers of foragers that independently search for pollen sources (scouts) in response to protein demand by the colony, resulting in a lower variety of collected pollen types. The cooperative foraging strategy of honeybees involves a limited number of scouts monitoring the environment that then guide the majority of foragers to high quality food sources. The genetic composition of the colony appears to play an important role in the efficiency of this behavior.  相似文献   
214.
Engineering projects involving hydrogeology are faced with uncertainties because the earth is heterogeneous, and typical data sets are fragmented and disparate. In theory, predictions provided by computer simulations using calibrated models constrained by geological boundaries provide answers to support management decisions, and geostatistical methods quantify safety margins. In practice, current methods are limited by the data types and models that can be included, computational demands, or simplifying assumptions. Data Fusion Modeling (DFM) removes many of the limitations and is capable of providing data integration and model calibration with quantified uncertainty for a variety of hydrological, geological, and geophysical data types and models. The benefits of DFM for waste management, water supply, and geotechnical applications are savings in time and cost through the ability to produce visual models that fill in missing data and predictive numerical models to aid management optimization. DFM has the ability to update field-scale models in real time using PC or workstation systems and is ideally suited for parallel processing implementation. DFM is a spatial state estimation and system identification methodology that uses three sources of information: measured data, physical laws, and statistical models for uncertainty in spatial heterogeneities. What is new in DFM is the solution of the causality problem in the data assimilation Kalman filter methods to achieve computational practicality. The Kalman filter is generalized by introducing information filter methods due to Bierman coupled with a Markov random field representation for spatial variation. A Bayesian penalty function is implemented with Gauss–Newton methods. This leads to a computational problem similar to numerical simulation of the partial differential equations (PDEs) of groundwater. In fact, extensions of PDE solver ideas to break down computations over space form the computational heart of DFM. State estimates and uncertainties can be computed for heterogeneous hydraulic conductivity fields in multiple geological layers from the usually sparse hydraulic conductivity data and the often more plentiful head data. Further, a system identification theory has been derived based on statistical likelihood principles. A maximum likelihood theory is provided to estimate statistical parameters such as Markov model parameters that determine the geostatistical variogram. Field-scale application of DFM at the DOE Savannah River Site is presented and compared with manual calibration. DFM calibration runs converge in less than 1 h on a Pentium Pro PC for a 3D model with more than 15,000 nodes. Run time is approximately linear with the number of nodes. Furthermore, conditional simulation is used to quantify the statistical variability in model predictions such as contaminant breakthrough curves.  相似文献   
215.
Human exposure to insoluble and soluble nickel compounds is extensive. Besides wide usage in many industries, nickel compounds are contained in cigarette smoke and, in low levels, in ambient particulate matter. Soluble nickel particulate, especially nickel sulfate (NiSO4), has been associated with acute lung injury. To begin identifying genes controlling susceptibility to NiSO4, mean survival times (MSTs) of eight inbred mouse strains were determined after aerosol exposure. Whereas A/J (A) mice were sensitive, C57BL/6J (B6) mice survived nearly twice as long (resistant). Their offspring were similarly resistant, demonstrating heritability as a dominant trait. Quantitative trait locus (QTL) analysis of backcross mice generated from these strains identified a region on chromosome 6 significantly linked to survival time. Regions on chromosomes 1 and 12 were suggestive of linkage and regions on chromosomes 8, 9, and 16 contributed to the response. Haplotype analysis demonstrated that QTLs on chromosomes 6, 9, 12, and 16 could explain the MST difference between the parental strains. To complement QTL analysis results, cDNA microarray analysis was assessed following NiSO4 exposure of A and B6 mice. Significant expression changes were identified in one or both strains for >100 known genes. Closer evaluation of these changes revealed a temporal pattern of increased cell proliferation, extracellular matrix repair, hypoxia, and oxidative stress, followed by diminished surfactant proteins. Certain expressed sequence tags clustered with known genes, suggesting possible co-regulation and novel roles in pulmonary injury. Together, results from QTL and microarray analyses of nickel-induced acute lung injury survival allowed us to generate a short list of candidate genes.  相似文献   
216.
The ability of mussels (Perna viridis) and semi-permeable membrane devices (SPMDs) to accumulate polycyclic aromatic hydrocarbons (PAHs) and petroleum hydrocarbons (PHCs) from five sites in Hong Kong's coastal waters was compared. Mussels consistently had higher levels of contaminants, but their utility was limited at one highly polluted site due to mortality. Mussels and SPMDs ranked sites differently in terms of individual contaminant levels. Although SPMDs overcome many of the disadvantages of using living organisms to measure contaminants in marine waters, they cannot be used as "mimics" due to different PAH and PHC accumulation patterns.  相似文献   
217.
Effluents from three wastewater treatment plants with varying wastewater treatment technologies and design were analyzed for six antibiotics and caffeine on three sampling occasions. Sulfamethoxazole, trimethoprim, ciprofloxacin, tetracycline, and clindamycin were detected in the effluents at concentrations ranging from 0.090 to 6.0 microg/L. Caffeine was detected in all effluents at concentrations ranging from 0.19 to 9.9 microg/L. These findings indicate that several conventional wastewater management practices are not effective in the complete removal of antibiotics, and their discharges have a large potential to affect the aquatic environment. To evaluate the persistence of antibiotics coming from the wastewater discharges on the surrounding surface waters, samples were collected from the receiving streams at 10-, 20- and 100-m intervals. Ciprofloxacin, sulfamethoxazole, and clindamycin (0.043 to 0.076 microg/L) were found as far as 100 m from the discharge point, which indicates the persistence of these drugs in surface waters.  相似文献   
218.
A multiple linear regression model was used to investigate seasonal and long-term trends in concentrations of ozone (O3) and acid-related substances at the Saturna Island monitoring station in southwestern British Columbia from 1991 to 2000. Statistically significant primary (dominant) cycles with a period of 1 yr were found for O3, sulfur dioxide (SO2), nitric acid (HNO3), and aerosol concentrations of sulfate (SO4(2-)), calcium (Ca2+) and chloride (Cl-). Of these, peak median concentrations occurred during the spring for O3 and Ca2+, during the warmer, drier months (April-September) for SO4(2-) and HNO3, and during the cooler, wetter months (October-March) for SO2 and Cl-. Statistically significant secondary cycles of 6 months duration were seen for concentrations of O3, SO4(2-), HNO3, Ca2+, and Cl-. Daily maximum O3 concentrations exhibited a statistically significant increase over the period of record of 0.33 +/- 0.26 ppb/yr. Statistically significant declines were found for concentrations of SO2, SO4(2-), HNO3, Ca2+, and potassium, ranging from 20 to 36% from levels at the start of the sampling period. Declines in ambient concentrations of SO2, SO4(2-), and HNO3 reflect local declines in anthropogenic emissions of the primary precursors SO2 and NOx over the past decade. Trends in Ca2+ and potassium ion concentrations are in line with a broader North American declining trend in acid-neutralizing cations.  相似文献   
219.
Across the circumpolar North large disparities in the distribution of renewable and nonrenewable resources, human population density, capital investments, and basic residential and transportation infrastructure combine to create recognizable hotspots of recent and foreseeable change. Northern Fennoscandia exemplifies a relatively benign situation due to its current economic and political stability. Northern Russia is experiencing rapid, mostly negative changes reflecting the general state of crisis since the collapse of the Soviet Union. North America enjoys a relatively stable regulatory structure to mitigate environmental degradation associated with industry, but is on the verge of approving massive new development schemes that would significantly expand the spatial extent of potentially affected social-ecological systems. Institutional or regulatory context influences the extent to which ecosystem services are buffered against environmental change. With or without a warming climate, certain geographic areas appear especially vulnerable to damages that may threaten their ability to supply goods and services in the near future. Climate change may exacerbate this situation in some places but may offer opportunities to enhance resilience in the long term.  相似文献   
220.
China has announced plans to stabilize its pesticide use by 2020. Yet, future climate change will possibly increase the difficulty of meeting this goal. This study uses econometric estimation to explore how climate impacts Chinese pesticide usage and subsequently to project the future implications of climate change on pesticide use. The results indicate that both atmospheric temperature and precipitation increase pesticide usage. Under current climate change projections, pesticide usage will rise by +1.1 to 2.5% by 2040, +2.4 to 9.1% by 2070, and +2.6 to 18.3% by 2100. Linearly extrapolating the results to 2020 yields an approximately 0.5 to 1.2% increase. Thus, to achieve stabilization, more severe actions are needed to address this increase. Possible actions to achieve the reductions needed include using better monitoring and early warning networks so as to permit early responses to climate change-stimulated increases, enhancing information dissemination, altering crop mix, and promoting nonchemical control means. Additionally, given that increased pesticide usage generally increases health and environmental damage, there may be a need to more widely disseminate safe application procedure information while also strengthening compliance with food safety regulations. Furthermore, pest control strategies will need to be capable of evolving as climate change proceeds. Globally, efforts could be made to (1) scale up agrometeorological services, especially in developing countries; (2) use international frameworks to better align the environmental and health standards in developing countries with those in developed countries; and (3) adapt integrated pest management practices to climate change, especially for fruits and vegetables.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号