首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32254篇
  免费   390篇
  国内免费   423篇
安全科学   964篇
废物处理   1301篇
环保管理   4237篇
综合类   7638篇
基础理论   7553篇
环境理论   9篇
污染及防治   7948篇
评价与监测   1720篇
社会与环境   1519篇
灾害及防治   178篇
  2022年   265篇
  2021年   228篇
  2020年   239篇
  2019年   213篇
  2018年   441篇
  2017年   410篇
  2016年   641篇
  2015年   501篇
  2014年   714篇
  2013年   2405篇
  2012年   930篇
  2011年   1327篇
  2010年   1077篇
  2009年   1208篇
  2008年   1307篇
  2007年   1354篇
  2006年   1143篇
  2005年   1000篇
  2004年   1043篇
  2003年   950篇
  2002年   899篇
  2001年   1154篇
  2000年   848篇
  1999年   537篇
  1998年   394篇
  1997年   393篇
  1996年   388篇
  1995年   458篇
  1994年   416篇
  1993年   385篇
  1992年   369篇
  1991年   387篇
  1990年   399篇
  1989年   383篇
  1988年   312篇
  1987年   293篇
  1986年   304篇
  1985年   297篇
  1984年   355篇
  1983年   305篇
  1982年   342篇
  1981年   333篇
  1980年   272篇
  1979年   305篇
  1978年   223篇
  1977年   220篇
  1974年   219篇
  1973年   216篇
  1972年   207篇
  1967年   238篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
971.
A cost-of-illness framework was applied to health and income data to quantify the health burden from illnesses associated with exposure to polluted recreational marine waters. Using data on illness severity due to exposure to polluted coastal water and estimates of mean annual salaries and medical costs (adjusted to 2001 values) for residents of Orange County, California, we estimated that the economic burden per gastrointestinal illness (GI) amounts to 36.58 dollars, the burden per acute respiratory disease is 76.76 dollars, the burden per ear ailment is 37.86 dollars, and the burden per eye ailment is 27.31 dollars. These costs can become a substantial public health burden when millions of exposures per year to polluted coastal waters result in hundreds of thousands of illnesses. For example, exposures to polluted waters at Orange County's Newport and Huntington Beaches were estimated to generate an average of 36,778 GI episodes per year. At this GI illness rate, one can also expect that approximately 38,000 more illness episodes occurred per year of other types, including respiratory, eye, and ear infections. The combination of excess illnesses associated with coastal water pollution resulted in a cumulative public health burden of 3.3 million dollars per year for these two beaches. This paper introduces a public health cost variable that can be applied in cost-benefit analyses when evaluating pollution abatement strategies.  相似文献   
972.
973.
974.
Recycled waste wood is being increasingly used for energy production; however, organic and metal contaminants in by-products produced from the combustion/pyrolysis residue may pose a significant environmental risk if they are disposed of to land. Here we conducted a study to evaluate if highly polluted biochar (from pyrolysis) and ash (from incineration) derived from Cu-based preservative-treated wood led to different metal (e.g., Cu, As, Ni, Cd, Pb, and Zn) bioavailability and accumulation in sunflower (Helianthus annuus L.). In a pot experiment, biochar at a common rate of 2 % w/w, corresponding to ~50 t ha?1, and an equivalent pre-combustion dose of wood ash (0.2 % w/w) were added to a Eutric Cambisol (pH 6.02) and a Haplic Podzol (pH 4.95), respectively. Both amendments initially raised soil pH, although this effect was relatively short-term, with pH returning close to the unamended control within about 7 weeks. The addition of both amendments resulted in an exceedance of soil Cu statutory limit, together with a significant increase of Cu and plant nutrient (e.g., K) bioavailability. The metal-sorbing capacity of the biochar, and the temporary increase in soil pH caused by adding the ash and biochar were insufficient to offset the amount of free metal released into solution. Sunflower plants were negatively affected by the addition of metal-treated wood-derived biochar and led to elevated concentration of metals in plant tissue, and reduced above- and below-ground biomass, while sunflower did not grow at all in the Haplic Podzol. Biochar and ash derived from wood treated with Cu-based preservatives can lead to extremely high Cu concentrations in soil and negatively affect plant growth. Identifying sources of contaminated wood in waste stream feedstocks is crucial before large-scale application of biochar or wood ash to soil is considered.  相似文献   
975.
Selective agrochemicals including herbicides that do not affect non-target organisms such as natural enemies are important in the integrated pest management (IPM) programs. The aim of this study was to evaluate the herbicide toxicity, selectivity and hormesis of nicosulfuron, recommended for the corn Zea mays L. (Poaceae) crop, on 10 Trichogrammatidae (Hymenoptera) species. A female of each Trichogramma spp. or Trichogrammatoidea annulata De Santis, 1972 was individually placed in plastic test tubes (no choice) with a cardboard containing 45 flour moth Anagasta ( = Ephestia) kuehniella Zeller, 1879 (Lepidoptera: Pyralidae) eggs. Parasitism by these natural enemies was allowed for 48 h and the cardboards were sprayed with the herbicide nicosulfuron at 1.50 L.ha?1, along with the control (only distilled water). Nicosulfuron reduced the emergence rate of Trichogramma bruni Nagaraja, 1983 females, but increased that of Trichogramma pretiosum Riley, 1879, Trichogramma acacioi Brun, Moraes and Smith, 1984 and T. annulata females. Conversely, this herbicide increased the emergence rate of Trichogramma brasiliensis Ashmead, 1904, T. bruni, Trichogramma galloi Zucchi, 1988 and Trichogramma soaresi Nagaraja, 1983 males and decreased those of T. acacioi, Trichogramma atopovilia Oatman and Platner, 1983 and T. pretiosum males. In addition, nicosulfuron reduced the sex ratio of T. galloi, Trichogramma bennetti Nagaraja and Nagarkatti, 1973 and T. pretiosum and increased that of T. acacioi, T. bruni, T. annulata, Trichogramma demoraesi Nagaraja, 1983, T. soaresi and T. brasiliensis. The herbicide nicosulfuron was “harmless” (class 1, <30% reduction) for females and the sex ratio of all Trichogrammatidae species based on the International Organization for Biological Control (IOBC) classification. The possible hormesis effect of nicosulfuron on Trichogrammatidae species and on the bacterium Wolbachia sp. (Rickettsiales: Rickettsiaceae) was also discussed.  相似文献   
976.
One in 6 species (13,465 species) on the International Union for Conservation of Nature (IUCN) Red List is classified as data deficient due to lack of information on their taxonomy, population status, or impact of threats. Despite the chance that many are at high risk of extinction, data‐deficient species are typically excluded from global and local conservation priorities, as well as funding schemes. The number of data‐deficient species will greatly increase as the IUCN Red List becomes more inclusive of poorly known and speciose groups. A strategic approach is urgently needed to enhance the conservation value of data‐deficient assessments. To develop this, we reviewed 2879 data‐deficient assessments in 6 animal groups and identified 8 main justifications for assigning data‐deficient status (type series, few records, old records, uncertain provenance, uncertain population status or distribution, uncertain threats, taxonomic uncertainty, and new species). Assigning a consistent set of justification tags (i.e., consistent assignment to assessment justifications) to species classified as data deficient is a simple way to achieve more strategic assessments. Such tags would clarify the causes of data deficiency; facilitate the prediction of extinction risk; facilitate comparisons of data deficiency among taxonomic groups; and help prioritize species for reassessment. With renewed efforts, it could be straightforward to prevent thousands of data‐deficient species slipping unnoticed toward extinction.  相似文献   
977.
Inbreeding depression is an important long-term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long-term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state-space modeling methods based on a 26-year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F ) over time based on kinship of possible breeding pairs and to estimate empirically Ne/N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331–1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887–1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty.  相似文献   
978.
In arid regions of the developing world, pastoralists and livestock commonly inhabit protected areas, resulting in human–wildlife conflict. Conflict is inextricably linked to the ecological processes shaping relationships between pastoralists and native herbivores and carnivores. To elucidate relationships underpinning human–wildlife conflict, we synthesized 15 years of ecological and ethnographic data from Ikh Nart Nature Reserve in Mongolia's Gobi steppe. The density of argali (Ovis ammon), the world's largest wild sheep, at Ikh Nart was among the highest in Mongolia, yet livestock were >90% of ungulate biomass and dogs >90% of large‐carnivore biomass. For argali, pastoral activities decreased food availability, increased mortality from dog predation, and potentially increased disease risk. Isotope analyses indicated that livestock accounted for >50% of the diet of the majority of gray wolves (Canis lupus) and up to 90% of diet in 25% of sampled wolves (n = 8). Livestock composed at least 96% of ungulate prey in the single wolf pack for which we collected species‐specific prey data. Interviews with pastoralists indicated that wolves annually killed 1–4% of Ikh Nart's livestock, and pastoralists killed wolves in retribution. Pastoralists reduced wolf survival by killing them, but their livestock were an abundant food source for wolves. Consequently, wolf density appeared to be largely decoupled from argali density, and pastoralists had indirect effects on argali that could be negative if pastoralists increased wolf density (apparent competition) or positive if pastoralists decreased wolf predation (apparent facilitation). Ikh Nart's argali population was stable despite these threats, but livestock are increasingly dominant numerically and functionally relative to argali. To support both native wildlife and pastoral livelihoods, we suggest training dogs to not kill argali, community insurance against livestock losses to wolves, reintroducing key native prey species to hotspots of human–wolf conflict, and developing incentives for pastoralists to reduce livestock density.  相似文献   
979.
980.
A mobile laboratory equipped with a proton transfer reaction mass spectrometer (PTR-MS) operated in Galena Park, Texas, near the Houston Ship Channel during the Benzene and other Toxics Exposure Study (BEE-TEX). The mobile laboratory measured transient peaks of benzene of up to 37 ppbv in the afternoon and evening of February 19, 2015. Plume reconstruction and source attribution were performed using the four-dimensional (4D) variational data assimilation technique and a three-dimensional (3D) micro-scale forward and adjoint air quality model based on mobile PTR-MS data and nearby stationary wind measurements at the Galena Park Continuous Air Monitoring Station (CAMS). The results of inverse modeling indicate that significant pipeline emissions of benzene may at least partly explain the ambient concentration peaks observed in Galena Park during BEE-TEX. Total pipeline emissions of benzene inferred within the 16-km2 model domain exceeded point source emissions by roughly a factor of 2 during the observational episode. Besides pipeline leaks, the model also inferred significant benzene emissions from marine, railcar, and tank truck loading/unloading facilities, consistent with the presence of a tanker and barges in the Kinder Morgan port terminal during the afternoon and evening of February 19. Total domain emissions of benzene exceeded corresponding 2011 National Emissions Inventory (NEI) estimates by a factor of 2–6.

Implications:?Port operations involving petrochemicals may significantly increase emissions of air toxics from the transfer and storage of materials. Pipeline leaks, in particular, can lead to sporadic emissions greater than in emission inventories, resulting in higher ambient concentrations than are sampled by the existing monitoring network. The use of updated methods for ambient monitoring and source attribution in real time should be encouraged as an alternative to expanding the conventional monitoring network.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号