首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   2篇
安全科学   5篇
废物处理   4篇
环保管理   9篇
综合类   4篇
基础理论   12篇
污染及防治   8篇
评价与监测   4篇
社会与环境   2篇
  2023年   1篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2004年   3篇
  2002年   2篇
  2000年   1篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1968年   1篇
排序方式: 共有48条查询结果,搜索用时 31 毫秒
21.
A performance-based method for evaluating methane (CH4) oxidation as the best available control technology (BACT) for passive management of landfill gas (LFG) was applied at a municipal solid waste (MSW) landfill in central Washington, USA, to predict when conditions for functional stability with respect to LFG management would be expected. The permitted final cover design at the subject landfill is an all-soil evapotranspirative (ET) cover system. Using a model, a correlation between CH4 loading flux and oxidation was developed for the specific ET cover design. Under Washington’s regulations, a MSW landfill is functionally stable when it does not present a threat to human health or the environment (HHE) at the relevant point of exposure (POE), which was conservatively established as the cover surface. Approaches for modeling LFG migration and CH4 oxidation are discussed, along with comparisons between CH4 oxidation and biodegradation of non-CH4 organic compounds (NMOCs). The modeled oxidation capacity of the ET cover design is 15 g/m2/day under average climatic conditions at the site, with 100% oxidation expected on an annual average basis for fluxes up to 8 g/m2/day. This translates to a sitewide CH4 generation rate of about 260 m3/hr, which represents the functional stability target for allowing transition to cover oxidation as the BACT (subject to completion of a confirmation monitoring program). It is recognized that less than 100% oxidation might occur periodically if climate and/or cover conditions do not precisely match the model, but that residual emissions during such events would be de minimis in comparison with published limit values. Accordingly, it is also noted that nonzero net emissions may not represent a threat to HHE at a POE (i.e., a target flux between 8 and 15 g/m2/day might be appropriate for functional stability) depending on the site reuse plan and distance to potential receptors.

Implications: This study provides a scientifically defensible method for estimating when methane oxidation in landfill cover soils may represent the best available control technology for residual landfill gas (LFG) emissions. This should help operators and regulators agree on the process of safely eliminating active LFG controls in favor of passive control measures once LFG generation exhibits asymptotic trend behavior below the oxidation capacity of the soil. It also helps illustrate the potential benefits of evolving landfill designs to include all-soil vegetated evapotranspirative (ET) covers that meet sustainability objectives as well as regulatory performance objectives for infiltration control.  相似文献   

22.
Future climate and land‐use changes and growing human populations may reduce the abundance of water resources relative to anthropogenic and ecological needs in the Northeast and Midwest (U.S.). We used output from WaSSI, a water accounting model, to assess potential changes between 2010 and 2060 in (1) anthropogenic water stress for watersheds throughout the Northeast and Midwest and (2) native fish species richness (i.e., number of species) for the Upper Mississippi water resource region (UMWRR). Six alternative scenarios of climate change, land‐use change, and human population growth indicated future water supplies will, on average across the region, be adequate to meet anthropogenic demands. Nevertheless, the number of individual watersheds experiencing severe stress (demand > supplies) was projected to increase for most scenarios, and some watersheds were projected to experience severe stress under multiple scenarios. Similarly, we projected declines in fish species richness for UMWRR watersheds and found the number of watersheds with projected declines and the average magnitude of declines varied across scenarios. All watersheds in the UMWRR were projected to experience declines in richness for at least two future scenarios. Many watersheds projected to experience declines in fish species richness were not projected to experience severe anthropogenic water stress, emphasizing the need for multidimensional impact assessments of changing water resources.  相似文献   
23.
This research attempts to model the complexity of planting trees to increase China's CO(2) sequestration potential by using a GIS-based integrated assessment (IA) approach. We use the IA model to assess the impact of China's Grain for Green reforestation and afforestation program on farmer and state incomes as well as CO(2) sequestration in Liping County, Guizhou Province. The IA model consists of five sub-models for carbon sequestration, crop income, timber income, Grain for Green, and carbon credits. It also includes a complementary qualitative module for assessing program impacts by gender and ethnicity. Using four scenarios with various assumptions about types of trees planted, crop incomes by township, CO(2) credit prices, state subsidies, methods for estimating carbon sequestered, and harvesting of trees, we find great variation in the impact of the Grain for Green program on incomes and on carbon sequestered over a 48 year period at both the county and township levels.  相似文献   
24.
25.
This study employed a diary method to investigate everyday conversations. Consistent with a dynamic view of partner context interaction, it was predicted that conversations occurring in different contexts would show variations with respect to topics and conversation partners. Turkish university students recorded durations, topics, and conversation partners of their conversations for seven consecutive days. Contexts, topics, and partners were categorized. Respondents were utilized as units of analyses. Analyses revealed that context of conversations were related to topic and partner categories as well as intimacy ratings of partners and topics.  相似文献   
26.
Eight species of desert vegetation and associated soils were collected from the Nevada National Security Site (N2S2) and analyzed for 238Pu and 239 + 240Pu concentrations. Amongst the plant species sampled were: atmospheric elemental accumulators (moss and lichen), the very slow growing, long-lived creosote bush and the rapidly growing, short-lived cheatgrass brome. The diversity of growth strategies provided insight into the geochemical behavior and bio-availability of Pu at the N2S2. The highest concentrations of Pu were measured in the onion moss (24.27 Bq kg-1 238Pu and 52.78 Bq kg-1 239 + 240Pu) followed by the rimmed navel lichen (8.18 Bq kg-1 and 18.4 Bq kg-1 respectively), pointing to the importance of eolian transport of Pu. Brome and desert globemallow accumulated between 3 and 9 times higher concentrations of Pu than creosote and sage brush species. These results support the importance of species specific elemental accumulation strategies rather than exposure duration as the dominant variable influencing Pu concentrations in these plants. Total vegetation elemental concentrations of Ce, Fe, Al, Sm and others were also analyzed. Strong correlations were observed between Fe and Pu. This supports the conclusion that Pu was accumulated as a consequence of the active accumulation of Fe and other plant required nutrients. Cerium and Pu are considered to be chemical analogs. Strong correlations observed in plants support the conclusion that these elements displayed similar geochemical behavior in the environment as it related to the biochemical uptake process of vegetation. Soils were also sampled in association with vegetation samples. This allowed for the calculation of a concentration ratio (CR). The CR values for Pu in plants were highly influenced by the heterogeneity of Pu distribution among sites. Results from the naturally occurring elements of concern were more evenly distributed between sample sites. This allowed for the development of a pattern of plant species that accumulated Ce, Sm, Fe and Al. The highest accumulators of these elements were onion moss, lichen flowed by brome. The lowest accumulators were creosote bush and fourwing saltbush. This ranked order corresponds to plant accumulations of Pu.  相似文献   
27.
28.
Natural remediation is moving toward the forefront as engineers clean groundwater at the Savannah River Site (SRS), a major Department of Energy (DOE) installation near Aiken, South Carolina. This article reviews two successful, innovative remediation methods currently being deployed: biosparging to treat chlorinated solvents and phytoremediation to address tritium in groundwater. The biosparging system reintroduces oxygen into the groundwater and injects nutrient compounds for in‐situ remediation. The system has greatly reduced the concentrations of trichloroethylene (TCE) and vinyl chloride in wells downgradient from a sanitary landfill (SLF). Phytoremediation is an emerging technology that promises effective and inexpensive cleanup of certain hazardous wastes. Using natural processes, plants can break down, trap and hold, or transpire contaminants. This article discusses the use of phytoremediation to reduce the discharge of tritium to an on‐site stream at SRS. © 2002 Wiley Periodicals Inc. *  相似文献   
29.
Some of the most fertile agricultural land in Atlantic Canada includes dykelands, which were developed from rich salt marshes along the Bay of Fundy through the construction of dykes. A 2-yr field experiment was conducted on dykeland soil to evaluate the effect of fertility treatments: source-separated municipal solid waste (SS-MSW) compost, solid manure, commercial fertilizer, and gypsum on (1) timothy/red clover forage productivity, (2) N, S, and other nutrients uptake, and (3) residual NO(3)-N and NH(4)-N in the soil profile. All fertility treatments increased dry matter yields from the two cuts each year relative to the control. Residual soil NO(3)-N and NH(4)-N concentrations in the fall of the second year decreased with depth, and beyond 20-cm depth were lower than 1 mg kg(-1). Gypsum application equivalent to 40 kg S ha(-1) increased dry matter yields and N uptake by forage, and increased soil Mehlich 3-extractable S, tissue S, and uptake of S, Ca, P, Cu, Fe, and Mn relative to the control. High rates of compost can provide sufficient N, S, and perhaps other nutrients to a perennial forage system under the cool wet climate of Atlantic Canada with no heavy metal enrichment of forage. However, the chemical N provided greater total N uptake than organic sources, except the high rate of compost, suggesting that the N availability from organic sources was not well synchronized with forage N demand. Municipal solid waste compost may also increase soil and forage tissue Na, which might be of concern.  相似文献   
30.
The influence of aqueous‐ and mineral‐phase iron on royal demolition explosive (RDX) destruction has been previously investigated in theoretical settings and bench‐scale tests by various practitioners. The feasible use of in situ redox manipulation to create reactive Fe(II) is contingent upon the aquifer containing enough iron oxides and iron‐bearing clay minerals for the treated zone to remain effective. The following is a summary of a bench‐scale assessment of this relationship using aquifer material from an ongoing groundwater remediation effort at the Iowa Army Ammunition Plant (IAAP). A bench‐scale study was designed to determine the relative contributions of the biotic and iron‐mediated abiotic degradation processes to the net decrease in RDX observed at the site using saturated aquifer samples collected from within the RDX plume. Sterilized samples with a sufficient stoichiometric excess of both soluble and mineral‐phase iron reduced concentrations of RDX in both the soil and water fractions to the same extent as the samples containing native biota. These results indicate that in situ, abiotic degradation of RDX is feasible in areas unsuitable to biotic degradation processes, yielding an additional alternative for in situ RDX remediation. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号