首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   0篇
  国内免费   10篇
安全科学   3篇
废物处理   12篇
环保管理   33篇
综合类   44篇
基础理论   57篇
污染及防治   56篇
评价与监测   35篇
社会与环境   16篇
  2023年   2篇
  2022年   21篇
  2021年   10篇
  2020年   6篇
  2019年   7篇
  2018年   4篇
  2017年   14篇
  2016年   5篇
  2015年   6篇
  2014年   12篇
  2013年   23篇
  2012年   8篇
  2011年   14篇
  2010年   12篇
  2009年   14篇
  2008年   10篇
  2007年   9篇
  2006年   11篇
  2005年   9篇
  2004年   7篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1976年   5篇
  1975年   1篇
  1974年   4篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
  1962年   1篇
  1961年   1篇
  1959年   1篇
  1955年   1篇
  1953年   1篇
排序方式: 共有256条查询结果,搜索用时 18 毫秒
131.
Effects of salicylic acid (SA) on seed germination, seedling growth, flowering and biochemical activities were studied out in four cowpea (Vigna unguiculata) genotypes in control environments. The results revealed that both germination and seedling growth were negatively affected by 0.02%. SA application, however did not affect the size of full expanded buds, time of 50% flowering and date of flower initiation. A maximum increase in peroxidase (EC1.11.1.7) activity was observed in UPC 4200 over other genotypes. No significant change in the content of total soluble and intercellular fluid proteins was observed except in UPC 4200 genotype. SA induced accumulation of total soluble sugars more at flowering stage than at seed setting stage. It is evident from the present study that UPC 4200 genotype was more responsive to salicylic acid both in terms of increased peroxidase activity and less negative effect on morphological attributes, thus suggesting its wider use without negative impact on environment as salicylic acid has been reported in plants.  相似文献   
132.
A direct, controlled comparison of the photodegradation of imazethapyr has been made between imazethapyr in aqueous solutions, imazethapyr on the surface of epicuticular waxes of corn and soybean plants, and imazethapyr on the surface of intact corn and soybean plant leaves. In some experiments, the imazethapyr solutions were allowed to evaporate partially or fully after application to better model environmental conditions. The photodegradation of imazethapyr was fastest in aqueous solutions (k?=?0.16?±?0.02?h?1) and slowest on the surface of corn and soybean plants (kcorn?=?0.00048?±?0.001?h?1 and ksoy?=?0.00054?±?0.003?h?1). Experiments allowing evaporation during irradiation have intermediate rate constants (e.g., kcorn?=?0.082?±?0.005?h?1). Finally, identification of photoproducts was also examined on epicuticular waxes of corn and soybean plants for the first time.  相似文献   
133.
This study explored the possibility of removing 4‐nitrophenol (4‐NP) and 2,4‐dichlorophenol (2,4‐DCP) from water by using a dead blue‐green algae, Nostoc sp., dried and untreated and dried and treated with iron (Fe‐treated with 0.1 M ferric chloride solution for 1 day). The Nostoc sp. untreated and Fe‐treated biomass were used to study the sorption and desorption of 4‐NP and 2,4‐DCP. The effects of solute concentration, ionic strength, and temperature on sorption and desorption in the presence of untreated and treated Nostoc sp. biomass were investigated. The Fe‐treated Nostoc sp. biomass sorbed higher amounts of both 4‐NP and 2,4‐DCP than the untreated biomass. The percent cumulative desorption decreased from 6.41% to 0.28% and 1.84% to 0.19%, respectively, for 4‐NP and 2,4‐DCP for the Fe‐treated biomass. Biosorption of 4‐NP and 2,4‐DCP onto untreated and Fe‐treated Nostoc sp. biomass conformed to Freundlich isotherms. Iron treatment of Nostoc sp. biomass increased the value of ln K from 8.07 to 8.59 for 4‐NP and from 8.04 to 8.51 for 2,4‐DCP but decreased their desorption. An increase in ionic strength (0.003–0.03) increased the biosorption of both substituted phenols and decreased their percent desorption. An increase in temperature in the range of 15–35°C decreased the sorption of 4‐NP and 2,4‐DCP onto both untreated and Fe‐treated Nostoc sp. biomass and increased their desorption, indicating that the biosorption of both substituted phenols onto untreated and Fe‐treated Nostoc sp. biomass was principally a physical process. The results of this study suggest that Fe‐treated dried Nostoc sp. biomass could be explored as an inexpensive and eco‐friendly material for the effective removal of these phenols and, potentially, other chemicals from industrial wastewater and contaminated groundwater.  相似文献   
134.
Landfilling is one of the most common ways of municipal solid waste disposal. Degradation of organic waste produces CH(4) and other landfill gases that significantly contribute to global warming. However, before entering the atmosphere, part of the produced CH(4) can be oxidised while passing through the landfill cover. In the present study, the oxidation rate of CH(4) was studied with various types of compost as possible landfill cover. The influence of incubation time, moisture content and temperature on the CH(4) oxidation capacity of different types of compost was examined. It was observed that the influence of moisture content and temperature on methane oxidation is time-dependent. Maximum oxidation rates were observed at moisture contents ranging from 45% to 110% (dry weight basis), while the optimum temperature ranged from 15 to 30 degrees C.  相似文献   
135.
In order to establish the natural processes and geochemical factors responsible for enrichment of trace metal ions (Cu, Co, Ni, Zn and Cr) with respect to textural parameters (sand, silt and clay weight percentages) along with depth, multivariate statistical approach has been carried out for sediments in different water zones of Chilika lake, the largest brackish water lagoon in Asia. The rotated varimax factor results reveal that Cobalt enrichment is controlled by both textural parameters as well as adsorption mechanism. In fresh and saline water region, textural parameters and in mixed water, adsorption phenomenon predominates. Zn in fresh water is related to clay, whereas it is in adsorbed state in mixed water. Cu in fresh water sediments is in absorbed state and in mixed water it is related to depth and Co concentration. Cr does not show any specific association in fresh water, but in both mixed and saline water it is associated with clay minerals. Although both textural parameters and adsorption mechanism play an important role for the enrichment of trace metal ions in these lagoonal sediments, their relative importance varies with specific metal ions as well as the water quality. Sequential extraction technique was used to characterize the various forms of metals in the < 63μ size sediments of Chilika lake. The concentrations determined indicated selective accumulation of the various metals in the different phases with spatial variability in different water zones. Slightly higher availability of Co and Zn near Balugaon township in exchangeable phase may be related to anthropogenic activities. Among the non-lithogenous (NL) phases, reducible phase associated with higher concentration of Ni, Cu and Cr. Organic bound Zn and Co contributed highest percentages among NL fractions. Residual fraction contributed more than 50% in most of the cases, reflected the predominance of physical weathering, high erosion rate along the drainage basin.  相似文献   
136.
This paper presents the implementation of a Geospatial approach for improving the Municipal Solid Waste (MSW) disposal suitability site assessment in growing urban environment. The increasing trend of population growth and the absolute amounts of waste disposed of worldwide have increased substantially reflecting changes in consumption patterns, consequently worldwide. MSW is now a bigger problem than ever. Despite an increase in alternative techniques for disposing of waste, land-filling remains the primary means. In this context, the pressures and requirements placed on decision makers dealing with land-filling by government and society have increased, as they now have to make decisions taking into considerations environmental safety and economic practicality. The waste disposed by the municipal corporation in the Bhagalpur City (India) is thought to be different from the landfill waste where clearly scientific criterion for locating suitable disposal sites does not seem to exist. The location of disposal sites of Bhagalpur City represents the unconsciousness about the environmental and public health hazards arising from disposing of waste in improper location. Concerning about urban environment and health aspects of people, a good method of waste management and appropriate technologies needed for urban area of Bhagalpur city to improve this trend using Multi Criteria Geographical Information System and Remote Sensing for selection of suitable disposal sites. The purpose of GIS was to perform process to part restricted to highly suitable land followed by using chosen criteria. GIS modeling with overlay operation has been used to find the suitability site for MSW.  相似文献   
137.
Trace metals in soils may be inherited from the parent materials or added to the system due to anthropogenic activities. In proposed mining areas, trace metals become an integral part of the soil system. Usually, researchers undertake experiments on plant species selection (for the restoration plan) only after the termination of mining activities, i.e. without any pre-mining information about the soil-plant interactions. Though not shown in studies, it is clear that several recovery plans remain unsuccessful while carrying out restoration experiments. Therefore, we hypothesize that to restore the area effectively, it is imperative to consider the pre-mining scenario of metal levels in parent material as well as the vegetation ecology of the region. With these specifics, we examined the concentrations of trace metals in parent soils at three proposed bauxite locations in the Eastern Ghats, India, and compared them at a spatio-temporal scale. Vegetation quantification and other basic soil parameters accounted for establishing the connection between soil and plants. The study recorded significant spatial heterogeneity in trace metal concentrations and the role of vegetation on metal availability. Oxidation reduction potential (ORP), pH and cation exchange capacity (CEC) directly influenced metal content, and Cu and Ni were lithogenic in origin. It implies that for effective restoration plant species varies for each geological location.  相似文献   
138.
Exposure to arsenic in arsenic endemic areas is most remarkable environmental health challenges. Although effects of arsenic contamination are well established, reports are unavailable on probable seasonal variation due to changes of food habit depending on winter and summer seasons, especially for endemic regions of Nadia district, West Bengal. Complete 24-h diets, drinking–cooking water, first morning voided urine samples, and diet history were analyzed on 25 volunteers in arsenic endemic Chakdah block of Nadia district, once in summer followed by once in winter from the same participants. Results depicted no seasonal variation of body weight and body mass index. Arsenic concentration of source drinking and cooking water decreased (p?=?0.04) from 26 μg L?1 in summer to 6 μg L?1 in winter season. We recorded a seasonal decrease of water intake in male (3.8 and 2.5 L day ?1) and female (2.6 and 1.2 L day?1) participants from summer to winter. Arsenic intake through drinking water decreased (p?=?0.04) in winter (29 μg day?1) than in summer (100 μg day?1), and urinary arsenic concentration decreased (p?=?0.018) in winter (41 μg L?1) than in summer (69 μg L?1). Dietary arsenic intake remained unchanged (p?=?0.24) over the seasons. Hence, we can infer that human health risk assessment from arsenic needs an insight over temporal scale.  相似文献   
139.

Purpose

Electroplating industries are the main sources of heavy metals, chromium, nickel, lead, zinc, cadmium and copper. The highest concentrations of chromium (VI) in the effluent cause a direct hazards to human and animals. Therefore, there is a need of an effective and affordable biotechnological solution for removal of chromium from electroplating effluent.

Methods

Bacterial strains were isolated from electroplating effluent to find out higher tolerant isolate against chromate. The isolate was identified by 16S rDNA sequence analysis. Absorbed chromium level of bacterium was determined by inductively coupled plasma-atomic emission spectrometer (ICP-AES), atomic absorption spectrophotometer (AAS), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray analysis (EDX). Removal of metals by bacterium from the electroplating effluent eventually led to the detoxification of effluent confirmed by MTT assay. Conformational changes of functional groups of bacterial cell surface were studied through Fourier transform infrared spectroscopy.

Results

The chromate tolerant isolate was identified as Bacillus cereus. Bacterium has potency to remove more than 75% of chromium as measured by ICP-AES and AAS. The study indicated the accumulation of chromium (VI) on bacterial cell surface which was confirmed by the SEM-EDX and TEM analysis. The biosorption of metals from the electroplating effluent eventually led to the detoxification of effluent. The increased survivability of Huh7 cells cultured with treated effluent also confirmed the detoxification as examined by MTT assay.

Conclusion

Isolated strain B. cereus was able to remove and detoxify chromium (VI). It would be an efficient tool of the biotechnological approach in mitigating the heavy metal pollutants.  相似文献   
140.
Paech, Simon J., John R. Mecikalski, David M. Sumner, Chandra S. Pathak, Quinlong Wu, Shafiqul Islam, and Taiye Sangoyomi, 2009. A Calibrated, High‐Resolution GOES Satellite Solar Insolation Product for a Climatology of Florida Evapotranspiration. Journal of the American Water Resources Association (JAWRA) 45(6):1328‐1342. Abstract: Estimates of incoming solar radiation (insolation) from Geostationary Operational Environmental Satellite observations have been produced for the state of Florida over a 10‐year period (1995‐2004). These insolation estimates were developed into well‐calibrated half‐hourly and daily integrated solar insolation fields over the state at 2 km resolution, in addition to a 2‐week running minimum surface albedo product. Model results of the daily integrated insolation were compared with ground‐based pyranometers, and as a result, the entire dataset was calibrated. This calibration was accomplished through a three‐step process: (1) comparison with ground‐based pyranometer measurements on clear (noncloudy) reference days, (2) correcting for a bias related to cloudiness, and (3) deriving a monthly bias correction factor. Precalibration results indicated good model performance, with a station‐averaged model error of 2.2 MJ m?2/day (13%). Calibration reduced errors to 1.7 MJ m?2/day (10%), and also removed temporal‐related, seasonal‐related, and satellite sensor‐related biases. The calibrated insolation dataset will subsequently be used by state of Florida Water Management Districts to produce statewide, 2‐km resolution maps of estimated daily reference and potential evapotranspiration for water management‐related activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号