During the excavation of high gas mine, gas and dust often exist at the same time. In order to ensure that the gas concentration remains within a safe range and minimize the risk of workers’ pneumoconiosis, we simulated the interaction mechanism of airflow, gas, and dust, explored the pollution law of gas and dust, and obtained the optimal purification distance (Lp) by the CFD method. The reliability of the numerical simulation was verified by field measurements. Firstly, the properties of the gas and dust affected the structure of the airflow field. At the same time, the change in the airflow field affected the concentration distributions of the gas and dust. During the diffusion process, some high-risk regions in which the gas or dust concentrations exceeded 0.80% or 200 mg/m3, respectively, were discovered. Moreover, we have found that the airflow velocity in the top region of the tunnel and at the intersection corner between the cutting face and tunnel wall was the main factor affecting the purification effects. When Lp = 5–8 m, the gas concentration remained below 0.50%. When Lp = 6 m, the dust concentration reached a minimum of 287.5 mg/m3. Therefore, the optimal purification distance was determined to be 6 m; in which case, the gas and dust concentrations decreased by 32.84% and 47.02%, respectively.
Environmental Science and Pollution Research - This paper presents a quantitative pollutant discharge model for a typical molybdenum roasting plant, which combines the best available technology and... 相似文献
As important members of the zooplankton community and sources of food for fish, rotifers are used extensively in ecotoxicological research to assess the health of the environment and safety of compounds. However, most rotifer toxicity tests are only conducted using rotifer neonates derived from unexposed mothers, thus ignoring the potential transfer of contaminants from mother to offspring. To understand better the mother to offspring exposure, a multigenerational study was conducted using three successive generations (F0, F1 and F2) of the common freshwater rotifer Brachionus calyciflorus to investigate the toxic effects of the widely used organophosphate pesticide, dimethoate (O, O-dimethyl S-methylcarbamoylmethyl phosphorodithioate). When the F0 generation was exposed to five pesticide concentrations, the population growth rate (r) displayed symptoms of hormesis, characterized by the conversion of low-concentration stimulation to high-concentration inhibition. Despite this observation, the exposure to any given concentration of dimethoate reduced the population growth rates of the F1 and F2 generation rotifers. Significant differences existed between the F0, F1 and F2 rotifers for the population growth rate under dimethoate stress: F2 individuals were more sensitive than F1, whereas the F1 individuals were more sensitive than F0. The results indicated that the parental exposure to a given toxic stress could result in increased sensitivity and decreased fitness in the offspring. This study illustrates the utility of multigenerational toxicity tests, which may better reflect and more accurately predict the effects of long-term pesticide exposure to aquatic organisms at the population level. 相似文献
Formaldehyde and acetaldehyde are two most abundant carbonyls in ambient air. Biogenic emission has been proposed as a significant source other than anthropogenic emissions and atmospheric secondary formation. Here at a forest site in South China, the carbon isotopic compositions of formaldehyde and acetaldehyde emitted from leaves of three tree species (Litsea rotundifolia, Canarium album and Castanea henryi) were measured in comparison with the bulk carbon isotopic compositions of tree leaves. δ13C data of the emitted aldehydes (from ?31‰ to ?46‰) were quite different for tree species, which were all more depleted in 13C than the tree-leaf bulk δ13C values (from ?27‰ to ?32‰). Formaldehyde in ambient air at the forest site had δ13C values different from those of leaf-emitted formaldehyde, indicating other sources for ambient formaldehyde apart from direct emission from leaves, most probably the photooxidation of biogenic hydrocarbon like isoprene and monoterpene. The δ13C differences of acetaldehyde between ambient data and those of tree leaves emission were less than 1‰, implying direct biogenic emission as the dominant source. 相似文献