首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1206篇
  免费   20篇
  国内免费   11篇
安全科学   69篇
废物处理   75篇
环保管理   292篇
综合类   126篇
基础理论   221篇
环境理论   2篇
污染及防治   298篇
评价与监测   98篇
社会与环境   39篇
灾害及防治   17篇
  2023年   9篇
  2022年   7篇
  2021年   9篇
  2020年   16篇
  2019年   16篇
  2018年   20篇
  2017年   18篇
  2016年   22篇
  2015年   20篇
  2014年   26篇
  2013年   134篇
  2012年   40篇
  2011年   56篇
  2010年   53篇
  2009年   52篇
  2008年   59篇
  2007年   66篇
  2006年   68篇
  2005年   48篇
  2004年   33篇
  2003年   53篇
  2002年   46篇
  2001年   19篇
  2000年   14篇
  1999年   19篇
  1998年   21篇
  1997年   10篇
  1996年   11篇
  1995年   23篇
  1994年   12篇
  1993年   10篇
  1992年   15篇
  1991年   13篇
  1990年   17篇
  1989年   13篇
  1988年   9篇
  1987年   8篇
  1986年   9篇
  1985年   15篇
  1984年   11篇
  1983年   14篇
  1982年   19篇
  1981年   24篇
  1980年   10篇
  1979年   13篇
  1975年   4篇
  1974年   4篇
  1973年   8篇
  1972年   4篇
  1971年   4篇
排序方式: 共有1237条查询结果,搜索用时 48 毫秒
991.
Two thermodynamic equilibrium models were applied to estimate changes in mean airborne fine particle (PM2.5) mass concentrations that could result from changes in ambient concentrations of sulfate, nitric acid, or ammonia in the southeastern United States, the midwestern United States, and central California. Pronounced regional differences were found. Southeastern sites exhibited the lowest current mean concentrations of nitrate, and the smallest predicted responses of PM2.5 nitrate and mass concentrations to reductions of nitric acid, which is the principal reaction product of the oxidation of nitrogen dioxide (NO2) and the primary gas-phase precursor of fine particulate nitrate. Weak responses of PM2.5 nitrate and mass concentrations to changes in nitric acid levels occurred even if sulfate concentrations were half of current levels. The midwestern sites showed higher levels of fine particulate nitrate, characterized by cold-season maxima, and were projected to show decreases in overall PM levels following decreases of either sulfate or nitric acid. For some midwestern sites, predicted PM2.5 nitrate concentrations increased as modeled sulfate levels declined, but sulfate reductions always reduced the predicted fine PM mass concentrations; PM2.5 nitrate concentrations became more sensitive to reductions of nitric acid as modeled sulfate concentrations were decreased. The California sites currently have the highest mean concentrations of fine PM nitrate and the lowest mean concentrations of fine PM sulfate. Both the estimated PM2.5 nitrate and fine mass concentrations decreased in response to modeled reductions of nitric acid at all California sites. The results indicate important regional differences in expected PM2.5 mass concentration responses to changes in sulfate and nitrate precursors. Analyses of ambient data, such as described here, can be a key part of weight of evidence (WOE) demonstrations for PM2.5 attainment plans. Acquisition of the data may require special sampling efforts, especially for PM2.5 precursor concentration data.  相似文献   
992.
The Savannah River National Laboratory (SRNL) Weather Information and Display System was used to provide meteorological and atmospheric modeling/consequence assessment support to state and local agencies after the collision of two Norfolk Southern freight trains on the morning of January 6, 2005. This collision resulted in the release of several toxic chemicals to the environment, including chlorine. The dense and highly toxic cloud of chlorine gas that formed in the vicinity of the accident was responsible for 9 fatalities and caused injuries to more than 500 others. Transport model results depicting the forecast path of the ongoing release were made available to emergency managers in the county's Unified Command Center shortly after SRNL received a request for assistance. Support continued over the ensuing 2 days of the active response. The SRNL also provided weather briefings and transport/consequence assessment model results to responders from the South Carolina Department of Health and Environmental Control, the Savannah River Site (SRS) Emergency Operations Center, Department of Energy headquarters, and hazard material teams dispatched from the SRS. Operational model-generated forecast winds used in consequence assessments conducted during the incident were provided at 2-km horizontal grid spacing during the accident response. High-resolution Regional Atmospheric Modeling System (RAMS, version 4.3.0) simulation was later performed to examine potential influences of local topography on plume migration in greater detail. The detailed RAMS simulation was used to determine meteorology using multiple grids with an innermost grid spacing of 125 m. Results from the two simulations are shown to generally agree with meteorological observations at the time; consequently, local topography did not significantly affect wind in the area. Use of a dense gas dispersion model to simulate localized plume behavior using the higher-resolution winds indicated agreement with fatalities in the immediate area and visible damage to vegetation.  相似文献   
993.
We report the ability of nickel-based catalysts to degrade explosives compounds in aqueous solution. Several nickel catalysts completely degraded the explosives, although rates varied. Nearly all of the organic explosive compounds tested, including 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), were rapidly degraded to below detection limits by a powdered nickel on an alumina-silicate support (Aldrich nickel catalyst). Perchlorate degradation was minimal (<25%). Degradation of TNT by Aldrich nickel catalyst resulted in apparent first-order kinetics. Significant gaseous 14C was released and collected in an alkaline solution (most likely carbon dioxide) from [14C]RDX and [14C]HMX, indicating heterocyclic ring cleavage. Significant gaseous 14C was not produced from [14C]TNT, but spectrophotometric evidence indicated loss of aromaticity. Degradation occurred in low ionic strength solutions, groundwater, and from pH 3 to pH 9. Degradation of TNT, RDX, and HMX was maintained in flow-through columns of Aldrich nickel catalyst mixed with sand down to a hydraulic retention time of 4h. These data indicate that nickel-based catalysts may be an effective means for remediation of energetics-contaminated groundwater.  相似文献   
994.
Current-use chlorophenoxy herbicides including 2,4-dichlorophenoxyacetic acid, dicamba, triclopyr, dicamba, dimethyl tetrachloroterephthalate (DCPA or dacthal), and the metabolite of pyrethroids, 3-phenoxybenzoic acid (3-PBA), and the fungicide, chlorothalonil, were investigated in the eggs of osprey (Pandion haliaetus) that were collected from 15 sites from five study areas Puget Sound/Seattle area of Washington State, USA. DCPA differs from acidic chlorophenoxy herbicides, and is not readily hydrolyzed to free acid or acid metabolites, and thus we developed a new method. Of the 12 chlorophenoxy herbicides and chlorothalonil analyzed only DCPA could be quantified at six of these sites (2.0 to 10.3 pg/g fresh weight). However, higher levels (6.9 to 85.5 pg/g fresh weight) of the unexpected DCPA structural isomer, dimethyl tetrachlorophthalate (diMe-TCP) were quantified in eggs from all sites. diMe-TCP concentrations tended to be higher in eggs from the Everett Harbor area. As diMe-TCP is not an industrial product, and not commercially available, the source of diMe-TCP is unclear. Regardless, these findings indicate that DCPA and diMe-TCP can be accumulated in the food chain of fish-eating osprey, and transferred in ovo to eggs, and thus may be of concern to the health of the developing chick and the general reproductive health of this osprey population.  相似文献   
995.
Journal of Material Cycles and Waste Management - Biomethane potentials (BMPs) for avocado oil processing by-products were determined using six different theoretical BMP prediction models and...  相似文献   
996.
ABSTRACT

Mixing ratios of the criteria air contaminant nitrogen dioxide (NO2) are commonly quantified by reduction to nitric oxide (NO) using a photolytic converter followed by NO-O3 chemiluminescence (CL). In this work, the performance of a photolytic NO2 converter prototype originally designed for continuous emission monitoring and emitting light at 395 nm was evaluated. Mixing ratios of NO2 and NOx (= NO + NO2) entering and exiting the converter were monitored by blue diode laser cavity ring-down spectroscopy (CRDS). The NO2 photolysis frequency was determined by measuring the rate of conversion to NO as a function of converter residence time and found to be 4.2 s?1. A maximum 96% conversion of NO2 to NO over a large dynamic range was achieved at a residence time of (1.5 ± 0.3) s, independent of relative humidity. Interferences from odd nitrogen (NOy) species such as peroxyacyl nitrates (PAN; RC(O)O2NO2), alkyl nitrates (AN; RONO2), nitrous acid (HONO), and nitric acid (HNO3) were evaluated by operating the prototype converter outside its optimum operating range (i.e., at higher pressure and longer residence time) for easier quantification of interferences. Four mechanisms that generate artifacts and interferences were identified as follows: direct photolysis, foremost of HONO at a rate constant of 6% that of NO2; thermal decomposition, primarily of PAN; surface promoted photochemistry; and secondary chemistry in the connecting tubing. These interferences are likely present to a certain degree in all photolytic converters currently in use but are rarely evaluated or reported. Recommendations for improved performance of photolytic converters include operating at lower cell pressure and higher flow rates, thermal management that ideally results in a match of photolysis cell temperature with ambient conditions, and minimization of connecting tubing length. When properly implemented, these interferences can be made negligibly small when measuring NO2 in ambient air.

Implications: A new near-UV photolytic converter for measurement of the criteria pollutant nitrogen dioxide (NO2) in ambient air by CL was characterized. Four mechanisms that generate interferences were identified and investigated experimentally: direct photolysis of HONO which occurred at a rate constant 6% that of NO2, thermal decomposition of PAN and N2O5, surface promoted chemistry involving HNO3, and secondary chemistry involving NO in the tubing connecting the converter and CL analyzer. These interferences are predicted to occur in all NO2 P-CL systems but can be avoided by appropriate thermal management and operating at high flow rates.  相似文献   
997.
998.

Antimicrobial resistance (AMR) represents a major global health threat, as well as a major hazard to sustainable economic development and national security. It remains, therefore, vital that current research aligns to policy development and implementation to alleviate a potential crisis. One must consider, for example, whether drivers of antibiotic resistance can be controlled in the future, or have they already accumulated in the past, whether from antibiotics and/or other pollutants? Unfortunately, industrial heritage and its pollution impact on the prevalence of environmental AMR have largely been ignored. Focussing on industrialised estuaries, we demonstrate that anthropogenic pollution inputs in addition to the natural diurnal environmental conditions can sufficiently create stressful conditions to the microbiome and thus promote selective pressures to shift the resistome (i.e., collection of resistance traits in the microbiological community). Unfortunately, the bacteria’s survival mechanisms, via co-selective pressures, can affect their susceptibility to antibiotics. This review highlights the complexity of estuarine environments, using two key contaminant groups (metals/toxic elements and polyaromatic hydrocarbons), through which a variety of possible chemical and biological pollutant stressors can promote the emergence and dissemination of antimicrobial resistance. We find compelling divers to call on more focused research on historically disrupted ecosystems, in propagating AMR in the real world.

  相似文献   
999.
Temperature rise due to climate change is putting many arctic and alpine plants at risk of extinction because their ability to react is outpaced by the speed of climate change. We considered assisted species migration (ASM) and hybridization as methods to conserve cold-adapted species (or the genes thereof) and to minimize the potential perturbation of ecosystems due to climate change. Assisted species migration is the deliberate movement of individuals from their current location to where the species’ ecological requirements will be matched under climate projections. Hybridization refers to crossbreeding of closely related species, where for arctic and alpine plants, 1 parent is the threatened cold-adapted and the other its reproductively compatible, warm-adapted sibling. Traditionally, hybridization is viewed as negative and leading to a loss of biodiversity, even though hybridization has increased biodiversity over geological times. Furthermore, the incorporation of warm-adapted genes into a hybrid may be the only means for the persistence of increasingly more maladapted, cold-adapted species. If approached with thorough consideration of fitness-related parameters of the source population and acknowledgement of the important role hybridization has played in shaping current biodiversity, ASM and hybridization could help save partial or whole genomes of key cold-adapted species at risk due to climate change with minimal negative effects on ecosystem functioning.  相似文献   
1000.

The fate of six human-use drugs was assessed and predicted in mesocosms designed to mimic shallow constructed wetlands during the onset of fall and senescence. Mesocosms were monitored for 28 days after the addition of carbamazepine, clofibric acid, fluoxetine and naproxen (nominal initial concentrations of 5 μg/L each), sulfamethoxazole, and sulfapyridine (nominal initial concentrations of 150 μg/L each), with and without phosphorous (P) addition at 1.6 mg/L. We hypothesized that addition of P would stimulate primary productivity and enhance removal of pharmaceuticals from the water column. Carbamazepine, clofibric acid, fluoxetine, and naproxen had half-lives of 8.7, 11, 1.5, and 2.5, and 8.6, 11.0, 1.4, and 2.5 days in treatments with and without P amendment, respectively. Sulfamethoxazole and sulfapyridine had half-lives of 17 and 4.9 days in mesocosms with P amendment and 17 and 4.7 days without amendment. A concurrent pulse of P with pharmaceuticals did not significantly enhance the removal of these compounds. Predicted half-lives from modeling efforts were consistent with observed values, with photolysis the greatest contributor to chemical attenuation.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号