首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1206篇
  免费   20篇
  国内免费   11篇
安全科学   69篇
废物处理   75篇
环保管理   292篇
综合类   126篇
基础理论   221篇
环境理论   2篇
污染及防治   298篇
评价与监测   98篇
社会与环境   39篇
灾害及防治   17篇
  2023年   9篇
  2022年   7篇
  2021年   9篇
  2020年   16篇
  2019年   16篇
  2018年   20篇
  2017年   18篇
  2016年   22篇
  2015年   20篇
  2014年   26篇
  2013年   134篇
  2012年   40篇
  2011年   56篇
  2010年   53篇
  2009年   52篇
  2008年   59篇
  2007年   66篇
  2006年   68篇
  2005年   48篇
  2004年   33篇
  2003年   53篇
  2002年   46篇
  2001年   19篇
  2000年   14篇
  1999年   19篇
  1998年   21篇
  1997年   10篇
  1996年   11篇
  1995年   23篇
  1994年   12篇
  1993年   10篇
  1992年   15篇
  1991年   13篇
  1990年   17篇
  1989年   13篇
  1988年   9篇
  1987年   8篇
  1986年   9篇
  1985年   15篇
  1984年   11篇
  1983年   14篇
  1982年   19篇
  1981年   24篇
  1980年   10篇
  1979年   13篇
  1975年   4篇
  1974年   4篇
  1973年   8篇
  1972年   4篇
  1971年   4篇
排序方式: 共有1237条查询结果,搜索用时 375 毫秒
991.
Vertical extinction profiles and columnar optical properties (optical depth, Angstrom exponent, lidar ratio, and particle depolarization) of aerosols were obtained by simultaneous measurements with a depolarization lidar and a sunphotometer at Taipei, Taiwan from February 2004 to January 2006. Columnar optical depths are high in Feb–Apr (0.61–0.75) by sunphotometer measurements. Lidar measurements show the contribution of aerosols in the free atmosphere on columnar optical depths are about 44–50% in Feb–Apr and about 26–37% in other months. Back-trajectory analyses and depolarization measurements show almost all of non-spherical aerosols originated from Northwest China which indicate Asian dusts frequently transported to Taipei from dust source regions in the free atmosphere. Aerosols with depolarization lower than 5% are found mostly originated from South China or Southeast Asia. Good correlations between columnar lidar ratio, particle depolarization, and Angstrom exponent are found for cases that columnar water vapor less than 1.5 cm. The effect of water vapor on particle depolarization is briefly discussed.  相似文献   
992.
Magnetic resonance imaging (MRI) was used to visualize the NAPL source zone architecture before and after surfactant-enhanced NAPL dissolution in three-dimensional (3D) heterogeneously packed flowcells characterized by different longitudinal correlation lengths: 2.1 cm (aquifer 1) and 1.1 cm (aquifer 2). Surfactant flowpaths were determined by imaging the breakthrough of a paramagnetic tracer (MnCl(2)) analyzed by the method of moments. In both experimental aquifers, preferential flow occurred in high permeability materials with low NAPL saturations, and NAPL was preferentially removed from the top of the aquifers with low saturation. Alternate flushing with water and two surfactant pulses (5-6 pore volumes each) resulted in approximately 63% of NAPL mass removal from both aquifers. However, overall reduction in mass flux (Mass Flux 1) exiting the flowcell was lower in aquifer 2 (68%) than in aquifer 1 (81%), and local effluent concentrations were found to increase by as high as 120 times at local sampling ports from aquifer 2 after surfactant flushing. 3D MRI images of NAPL revealed that NAPL migrated downward and created additional NAPL source zones in previously uncontaminated areas at the bottom of the aquifers. The additional NAPL source zones were created in the direction transverse to flow in aquifer 2, which explains the higher mass flux relative to aquifer 1. Analysis using a total trapping number indicates that mobilization of NAPL trapped in the two coarsest sand fractions is possible when saturation is below 0.5 and 0.4, respectively. Results from this study highlight the potential impacts of porous media heterogeneity and NAPL source zone architecture on advanced in-situ flushing technologies.  相似文献   
993.
Recovery of mercury-contaminated fisheries   总被引:2,自引:0,他引:2  
In this paper, we synthesize available information on the links between changes in ecosystem loading of inorganic mercury (Hg) and levels of methylmercury (MeHg) in fish. Although it is widely hypothesized that increased Hg load to aquatic ecosystems leads to increases in MeHg in fish, there is limited quantitative data to test this hypothesis. Here we examine the available evidence from a range of sources: studies of ecosystems contaminated by industrial discharges, observations of fish MeHg responses to changes in atmospheric load, studies over space and environmental gradients, and experimental manipulations. A summary of the current understanding of the main processes involved in the transport and transformation from Hg load to MeHg in fish is provided. The role of Hg loading is discussed in context with other factors affecting Hg cycling and bioaccumulation in relation to timing and magnitude of response in fish MeHg. The main conclusion drawn is that changes in Hg loading (increase or decrease) will yield a response in fish MeHg but that the timing and magnitude of the response will vary depending of ecosystem-specific variables and the form of the Hg loaded.  相似文献   
994.
Dilly O  Blume HP  Sehy U  Jimenez M  Munch JC 《Chemosphere》2003,52(3):557-569
Land use and agricultural practices modify both the amounts and properties of C and N in soil organic matter. In order to evaluate land use and management-dependent modifications of stable and labile C and N soil pools, (i). organic C and total N content, (ii). microbial (C(mic)) and N (N(mic)) content and (iii). C and N mineralisation rates, termed biologically active C and N, were estimated in arable, grassland and forest soils from northern and southern Germany. The C/N-ratios were calculated for the three levels (i)-(iii) and linked to the eco-physiological quotients of biotic-fixed C and N (C(mic)/C(org), N(mic)/N(t)) and biomass-specific C and N mineralisation rate (qCO(2), qN(min)). Correlations could mainly be determined between organic C, total N, C(mic), N(mic) and C mineralisation for the broader data set of the land use systems. Generally, the mineralisation activity rate at 22 degrees C was highly variable and ranged between 0.11 and 17.67 microg CO(2)-C g(-1) soil h(-1) and -0.12 and 3.81 microg (deltaNH(4)(+)+deltaNO(3)(-))-N g(-1) soil h(-1). Negative N data may be derived from both N immobilisation and N volatilisation during the experiments. The ratio between C and N mineralisation rate differed significantly between the soils ranging from 5 to 37, and was not correlated to the soil C/N ratio and C(mic)/N(mic) ratio. The C/N ratio in the 'biologically active' pool was significantly smaller in soils under conventional farming than those under organic farming systems. In a beech forest, it increased from the L, Of to the Ah horizon. The biologically active C and N pools refer to the current microbial eco-physiology and are related to the need for being C and N use efficient as indicated by metabolic qCO(2) and qN(min) quotients.  相似文献   
995.
Journal of Material Cycles and Waste Management - Biomethane potentials (BMPs) for avocado oil processing by-products were determined using six different theoretical BMP prediction models and...  相似文献   
996.
ABSTRACT

Mixing ratios of the criteria air contaminant nitrogen dioxide (NO2) are commonly quantified by reduction to nitric oxide (NO) using a photolytic converter followed by NO-O3 chemiluminescence (CL). In this work, the performance of a photolytic NO2 converter prototype originally designed for continuous emission monitoring and emitting light at 395 nm was evaluated. Mixing ratios of NO2 and NOx (= NO + NO2) entering and exiting the converter were monitored by blue diode laser cavity ring-down spectroscopy (CRDS). The NO2 photolysis frequency was determined by measuring the rate of conversion to NO as a function of converter residence time and found to be 4.2 s?1. A maximum 96% conversion of NO2 to NO over a large dynamic range was achieved at a residence time of (1.5 ± 0.3) s, independent of relative humidity. Interferences from odd nitrogen (NOy) species such as peroxyacyl nitrates (PAN; RC(O)O2NO2), alkyl nitrates (AN; RONO2), nitrous acid (HONO), and nitric acid (HNO3) were evaluated by operating the prototype converter outside its optimum operating range (i.e., at higher pressure and longer residence time) for easier quantification of interferences. Four mechanisms that generate artifacts and interferences were identified as follows: direct photolysis, foremost of HONO at a rate constant of 6% that of NO2; thermal decomposition, primarily of PAN; surface promoted photochemistry; and secondary chemistry in the connecting tubing. These interferences are likely present to a certain degree in all photolytic converters currently in use but are rarely evaluated or reported. Recommendations for improved performance of photolytic converters include operating at lower cell pressure and higher flow rates, thermal management that ideally results in a match of photolysis cell temperature with ambient conditions, and minimization of connecting tubing length. When properly implemented, these interferences can be made negligibly small when measuring NO2 in ambient air.

Implications: A new near-UV photolytic converter for measurement of the criteria pollutant nitrogen dioxide (NO2) in ambient air by CL was characterized. Four mechanisms that generate interferences were identified and investigated experimentally: direct photolysis of HONO which occurred at a rate constant 6% that of NO2, thermal decomposition of PAN and N2O5, surface promoted chemistry involving HNO3, and secondary chemistry involving NO in the tubing connecting the converter and CL analyzer. These interferences are predicted to occur in all NO2 P-CL systems but can be avoided by appropriate thermal management and operating at high flow rates.  相似文献   
997.
998.

Antimicrobial resistance (AMR) represents a major global health threat, as well as a major hazard to sustainable economic development and national security. It remains, therefore, vital that current research aligns to policy development and implementation to alleviate a potential crisis. One must consider, for example, whether drivers of antibiotic resistance can be controlled in the future, or have they already accumulated in the past, whether from antibiotics and/or other pollutants? Unfortunately, industrial heritage and its pollution impact on the prevalence of environmental AMR have largely been ignored. Focussing on industrialised estuaries, we demonstrate that anthropogenic pollution inputs in addition to the natural diurnal environmental conditions can sufficiently create stressful conditions to the microbiome and thus promote selective pressures to shift the resistome (i.e., collection of resistance traits in the microbiological community). Unfortunately, the bacteria’s survival mechanisms, via co-selective pressures, can affect their susceptibility to antibiotics. This review highlights the complexity of estuarine environments, using two key contaminant groups (metals/toxic elements and polyaromatic hydrocarbons), through which a variety of possible chemical and biological pollutant stressors can promote the emergence and dissemination of antimicrobial resistance. We find compelling divers to call on more focused research on historically disrupted ecosystems, in propagating AMR in the real world.

  相似文献   
999.
Temperature rise due to climate change is putting many arctic and alpine plants at risk of extinction because their ability to react is outpaced by the speed of climate change. We considered assisted species migration (ASM) and hybridization as methods to conserve cold-adapted species (or the genes thereof) and to minimize the potential perturbation of ecosystems due to climate change. Assisted species migration is the deliberate movement of individuals from their current location to where the species’ ecological requirements will be matched under climate projections. Hybridization refers to crossbreeding of closely related species, where for arctic and alpine plants, 1 parent is the threatened cold-adapted and the other its reproductively compatible, warm-adapted sibling. Traditionally, hybridization is viewed as negative and leading to a loss of biodiversity, even though hybridization has increased biodiversity over geological times. Furthermore, the incorporation of warm-adapted genes into a hybrid may be the only means for the persistence of increasingly more maladapted, cold-adapted species. If approached with thorough consideration of fitness-related parameters of the source population and acknowledgement of the important role hybridization has played in shaping current biodiversity, ASM and hybridization could help save partial or whole genomes of key cold-adapted species at risk due to climate change with minimal negative effects on ecosystem functioning.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号