首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1209篇
  免费   21篇
  国内免费   11篇
安全科学   68篇
废物处理   75篇
环保管理   296篇
综合类   127篇
基础理论   222篇
环境理论   2篇
污染及防治   297篇
评价与监测   98篇
社会与环境   39篇
灾害及防治   17篇
  2023年   9篇
  2022年   7篇
  2021年   9篇
  2020年   16篇
  2019年   16篇
  2018年   21篇
  2017年   18篇
  2016年   22篇
  2015年   20篇
  2014年   26篇
  2013年   135篇
  2012年   40篇
  2011年   56篇
  2010年   53篇
  2009年   50篇
  2008年   59篇
  2007年   66篇
  2006年   68篇
  2005年   48篇
  2004年   33篇
  2003年   53篇
  2002年   46篇
  2001年   19篇
  2000年   14篇
  1999年   21篇
  1998年   23篇
  1997年   11篇
  1996年   11篇
  1995年   23篇
  1994年   12篇
  1993年   10篇
  1992年   15篇
  1991年   13篇
  1990年   17篇
  1989年   13篇
  1988年   9篇
  1987年   8篇
  1986年   8篇
  1985年   15篇
  1984年   11篇
  1983年   14篇
  1982年   19篇
  1981年   24篇
  1980年   10篇
  1979年   13篇
  1975年   4篇
  1974年   4篇
  1973年   8篇
  1972年   4篇
  1971年   4篇
排序方式: 共有1241条查询结果,搜索用时 31 毫秒
941.
We report the ability of nickel-based catalysts to degrade explosives compounds in aqueous solution. Several nickel catalysts completely degraded the explosives, although rates varied. Nearly all of the organic explosive compounds tested, including 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), were rapidly degraded to below detection limits by a powdered nickel on an alumina-silicate support (Aldrich nickel catalyst). Perchlorate degradation was minimal (<25%). Degradation of TNT by Aldrich nickel catalyst resulted in apparent first-order kinetics. Significant gaseous 14C was released and collected in an alkaline solution (most likely carbon dioxide) from [14C]RDX and [14C]HMX, indicating heterocyclic ring cleavage. Significant gaseous 14C was not produced from [14C]TNT, but spectrophotometric evidence indicated loss of aromaticity. Degradation occurred in low ionic strength solutions, groundwater, and from pH 3 to pH 9. Degradation of TNT, RDX, and HMX was maintained in flow-through columns of Aldrich nickel catalyst mixed with sand down to a hydraulic retention time of 4h. These data indicate that nickel-based catalysts may be an effective means for remediation of energetics-contaminated groundwater.  相似文献   
942.
Two thermodynamic equilibrium models were applied to estimate changes in mean airborne fine particle (PM2.5) mass concentrations that could result from changes in ambient concentrations of sulfate, nitric acid, or ammonia in the southeastern United States, the midwestern United States, and central California. Pronounced regional differences were found. Southeastern sites exhibited the lowest current mean concentrations of nitrate, and the smallest predicted responses of PM2.5 nitrate and mass concentrations to reductions of nitric acid, which is the principal reaction product of the oxidation of nitrogen dioxide (NO2) and the primary gas-phase precursor of fine particulate nitrate. Weak responses of PM2.5 nitrate and mass concentrations to changes in nitric acid levels occurred even if sulfate concentrations were half of current levels. The midwestern sites showed higher levels of fine particulate nitrate, characterized by cold-season maxima, and were projected to show decreases in overall PM levels following decreases of either sulfate or nitric acid. For some midwestern sites, predicted PM2.5 nitrate concentrations increased as modeled sulfate levels declined, but sulfate reductions always reduced the predicted fine PM mass concentrations; PM2.5 nitrate concentrations became more sensitive to reductions of nitric acid as modeled sulfate concentrations were decreased. The California sites currently have the highest mean concentrations of fine PM nitrate and the lowest mean concentrations of fine PM sulfate. Both the estimated PM2.5 nitrate and fine mass concentrations decreased in response to modeled reductions of nitric acid at all California sites. The results indicate important regional differences in expected PM2.5 mass concentration responses to changes in sulfate and nitrate precursors. Analyses of ambient data, such as described here, can be a key part of weight of evidence (WOE) demonstrations for PM2.5 attainment plans. Acquisition of the data may require special sampling efforts, especially for PM2.5 precursor concentration data.  相似文献   
943.
Recovery of mercury-contaminated fisheries   总被引:2,自引:0,他引:2  
In this paper, we synthesize available information on the links between changes in ecosystem loading of inorganic mercury (Hg) and levels of methylmercury (MeHg) in fish. Although it is widely hypothesized that increased Hg load to aquatic ecosystems leads to increases in MeHg in fish, there is limited quantitative data to test this hypothesis. Here we examine the available evidence from a range of sources: studies of ecosystems contaminated by industrial discharges, observations of fish MeHg responses to changes in atmospheric load, studies over space and environmental gradients, and experimental manipulations. A summary of the current understanding of the main processes involved in the transport and transformation from Hg load to MeHg in fish is provided. The role of Hg loading is discussed in context with other factors affecting Hg cycling and bioaccumulation in relation to timing and magnitude of response in fish MeHg. The main conclusion drawn is that changes in Hg loading (increase or decrease) will yield a response in fish MeHg but that the timing and magnitude of the response will vary depending of ecosystem-specific variables and the form of the Hg loaded.  相似文献   
944.
The Savannah River National Laboratory (SRNL) Weather Information and Display System was used to provide meteorological and atmospheric modeling/consequence assessment support to state and local agencies after the collision of two Norfolk Southern freight trains on the morning of January 6, 2005. This collision resulted in the release of several toxic chemicals to the environment, including chlorine. The dense and highly toxic cloud of chlorine gas that formed in the vicinity of the accident was responsible for 9 fatalities and caused injuries to more than 500 others. Transport model results depicting the forecast path of the ongoing release were made available to emergency managers in the county's Unified Command Center shortly after SRNL received a request for assistance. Support continued over the ensuing 2 days of the active response. The SRNL also provided weather briefings and transport/consequence assessment model results to responders from the South Carolina Department of Health and Environmental Control, the Savannah River Site (SRS) Emergency Operations Center, Department of Energy headquarters, and hazard material teams dispatched from the SRS. Operational model-generated forecast winds used in consequence assessments conducted during the incident were provided at 2-km horizontal grid spacing during the accident response. High-resolution Regional Atmospheric Modeling System (RAMS, version 4.3.0) simulation was later performed to examine potential influences of local topography on plume migration in greater detail. The detailed RAMS simulation was used to determine meteorology using multiple grids with an innermost grid spacing of 125 m. Results from the two simulations are shown to generally agree with meteorological observations at the time; consequently, local topography did not significantly affect wind in the area. Use of a dense gas dispersion model to simulate localized plume behavior using the higher-resolution winds indicated agreement with fatalities in the immediate area and visible damage to vegetation.  相似文献   
945.
The Detroit Exposure and Aerosol Research Study (DEARS) provided data to compare outdoor residential coarse particulate matter (PM10–2.5) concentrations in six different areas of Detroit with data from a central monitoring site. Daily and seasonal influences on the spatial distribution of PM10–2.5 during Summer 2006 and Winter 2007 were investigated using data collected with the newly developed coarse particle exposure monitor (CPEM). These data allowed the representativeness of the community monitoring site to be assessed for the greater Detroit metro area. Multiple CPEMs collocated with a dichotomous sampler determined the precision and accuracy of the CPEM PM10–2.5 and PM2.5 data.CPEM PM2.5 concentrations agreed well with the dichotomous sampler data. The slope was 0.97 and the R2 was 0.91. CPEM concentrations had an average 23% negative bias and R2 of 0.81. The directional nature of the CPEM sampling efficiency due to bluff body effects probably caused the negative CPEM concentration bias.PM10–2.5 was observed to vary spatially and temporally across Detroit, reflecting the seasonal impact of local sources. Summer PM10–2.5 was 5 μg m?3 higher in the two industrial areas near downtown than the average concentrations in other areas of Detroit. An area impacted by vehicular traffic had concentrations 8 μg m?3 higher than the average concentrations in other parts of Detroit in the winter due to the suspected suspension of road salt. PM10–2.5 Pearson Correlation Coefficients between monitoring locations varied from 0.03 to 0.76. All summer PM10–2.5 correlations were greater than 0.28 and statistically significant (p-value < 0.05). Winter PM10–2.5 correlations greater than 0.33 were statistically significant (p-value < 0.05). The PM10–2.5 correlations found to be insignificant were associated with the area impacted by mobile sources during the winter. The suspected suspension of road salt from the Southfield Freeway, combined with a very stable atmosphere, caused concentrations to be greater in this area compared to other areas of Detroit. These findings indicated that PM10–2.5, although correlated in some instances, varies sufficiently across a complex urban airshed that that a central monitoring site may not adequately represent the population's exposure to PM10–2.5.  相似文献   
946.
To document the toxicity of copper and nickel in binary mixtures, freshwater amphipods Gammarus pulex were exposed to the metals given independently or as mixtures. Toxicity to Cu alone was relatively high: 96-h LC10 and LC50 were found at 91 and 196 μg L?1, respectively. Toxicity to Ni alone was very low, with 96-h LC10 and LC50 of 44,900 and 79,200 μg L?1, respectively. Mixture toxicities were calculated from single toxicity data using conventional models. Modeled toxicity was then compared with the measured toxicity of the binary mixture. Two kinds of mixtures were tested. Type I mixtures were designed as combinations of Cu and Ni given at the same effect concentrations, when taken independently, to identify possible interactions between copper and nickel. In type II mixtures, Cu concentrations varied from 0 to 600 μg L?1 while the nickel concentration was kept constant at 500 μg L?1 to mimic conditions of industrial wastewater discharges. Ni and Cu showed synergic effects in type I mixtures while type II mixtures revealed antagonistic effects. Low doses of Ni reduced Cu toxicity towards G. pulex. These results show that even for simple binary mixtures of contaminants with known chemistry and toxicity, unexpected interactions between the contaminants may occur. This reduces the reliability of conventional additivity models.  相似文献   
947.
Abstract

This work assessed the usefulness of a current air quality model (American Meteorological Society/Environmental Protection Agency Regulatory Model [AERMOD]) for predicting air concentrations and deposition of perfluorooctanoate (PFO) near a manufacturing facility. Air quality models play an important role in providing information for verifying permitting conditions and for exposure assessment purposes. It is important to ensure traditional modeling approaches are applicable to perfluorinated compounds, which are known to have unusual properties. Measured field data were compared with modeling predictions to show that AERMOD adequately located the maximum air concentration in the study area, provided representative or conservative air concentration estimates, and demonstrated bias and scatter not significantly different than that reported for other compounds. Surface soil/grass concentrations resulting from modeled deposition flux also showed acceptable bias and scatter compared with measured concentrations of PFO in soil/grass samples. Errors in predictions of air concentrations or deposition may be best explained by meteorological input uncertainty and conservatism in the PRIME algorithm used to account for building downwash. In general, AERMOD was found to be a useful screening tool for modeling the dispersion and deposition of PFO in air near a manufacturing facility.  相似文献   
948.
The precursors used to conduct and the results of a cost-effectiveness study of photochemical oxidant episode control actions for the State of Illinois are analyzed. The method is general enough to be used in analyzing short-term episode regulations in other geographical areas and for other types of pollutants. Real costs and the probable emission reductions of the precursor compounds to oxidant formation, hydrocarbons and nitrogen oxides, are estimated for each of twenty-two control actions and for sets of control actions that are implemented at four episode stages. Control actions affect the use of motor vehicles and parking facilities; scheduling of road repairs; and the operation of manufacturing and other facilities having process emissions, electric power plants, commercial establishments, and refuse incinerators. The actions are analyzed and compared on the basis of relative economic efficiency. The expected annual cost of the regulation and the distribution of cost across sectors are also discussed. The annual cost of the oxidant episode regulation in the Chicago SMSA Is estimated to be $12.9 million; expected annual emission reductions are 1180 ton hydrocarbons and 970 ton nitrogen oxide. It is concluded that the expected cost of the regulation is not overly restrictive if the frequency of major curtailments in manufacturing and transportation is low; the cost is relatively small compared with the estimated annual cost of sulfur dioxide and particulate controls.  相似文献   
949.
Volatile organic compounds can contribute to the failure of electronic equipment in both switching offices and data centers. They can also be useful indicators of ventilation needs. Only within the past decade have ambient concentrations of volatile organics been measured routinely. In standard sampling approach, a pump is used to pull a known volume of air through an adsorbent. This study examines a sampling procedure that does not use a pump, but instead depends on molecular diffusion for eventual contact between the vapor phase compounds and the charcoal sorbent (passive sampling). The technique is both simpler and less expensive than active sampling with a pump. This method has been validated for low-level sampling over extended time intervals. This study demonstrates that collected amounts vary linearly with airborne concentrations for sampling intervals in excess of four weeks: even after eight weeks of sampling at typical ambient concentrations, the amount of material collected does not approach the capacity of the sorbent. The method is applicable for concentrations spanning six orders of magnitude; reproducibility averages 13 percent of the mean value; and the sensitivity is excellent (0.06 μg/m3 or roughly 0.015 ppbv for a compound with a molecular weight of 100). The procedure has already been used successfully to monitor indoor air quality at almost a dozen telephone office and data center sites.  相似文献   
950.
Novel silica-enhanced lime sorbents were tested in a bench-scale sand-bed reactor for their potential for SO2 removal from flue gas. Reactor conditions were 64°C (147°F), relative humidity of 60 percent [corresponding to an approach to saturation temperature of 10°C (18°F)], and inlet SO2 concentration of 500 or 1000 ppm. The sorbents were prepared by pressure hydration of CaO or Ca(OH)2 with siliceous materials at 100°C (101 kPa) [212°F (14.7 psi)] to 230°C (2793 kPa) [446°F (405 psi)] for 15 min to 4 h. Pressure hydration fostered the formation of a sorbent reactive with SO2 from fly ash and Ca(OH)2 in a much shorter time than did atmospheric hydration. The conversion of Ca(OH)2 in the sand-bed reactor increased with the increasing weight ratio of fly ash to lime and correlated well with B.E.T. surface area, increasing with increasing surface area. The optimum temperature range for the pressure-hydration of fly ash with Ca(OH)2 was between 110 and 160°C (230 and 320 °F). The pressure hydration of diatomaceous earth with CaO did not offer significant reactivity advantages over atmospheric hydration; however, the rate of enhancement of Ca(OH)2 conversions was much faster with pressure hydration. Scanning electron microscope (SEM) and x-ray diffraction studies showed solids of different morphology with different fly ash/lime ratios and changing conditions of pressure hydration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号