首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1107篇
  免费   42篇
  国内免费   24篇
安全科学   56篇
废物处理   63篇
环保管理   299篇
综合类   101篇
基础理论   296篇
环境理论   4篇
污染及防治   221篇
评价与监测   76篇
社会与环境   48篇
灾害及防治   9篇
  2023年   14篇
  2022年   14篇
  2021年   17篇
  2020年   24篇
  2019年   16篇
  2018年   44篇
  2017年   44篇
  2016年   64篇
  2015年   46篇
  2014年   44篇
  2013年   85篇
  2012年   65篇
  2011年   88篇
  2010年   52篇
  2009年   57篇
  2008年   59篇
  2007年   63篇
  2006年   49篇
  2005年   31篇
  2004年   44篇
  2003年   34篇
  2002年   30篇
  2001年   14篇
  2000年   18篇
  1999年   17篇
  1998年   18篇
  1997年   19篇
  1996年   15篇
  1995年   8篇
  1994年   3篇
  1993年   12篇
  1992年   9篇
  1991年   8篇
  1990年   3篇
  1989年   3篇
  1988年   4篇
  1987年   8篇
  1986年   6篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   6篇
  1978年   2篇
  1976年   1篇
排序方式: 共有1173条查询结果,搜索用时 375 毫秒
291.
292.
293.
294.
We developed a comprehensive coupling framework with a multi-objective optimization that bridges a water balance model (WBM) and a wetland service model (WSM) to supporting wetland management. The framework was tested for management in Tram Chim National Park (with four wetland zones) where hydro-economic optimization was needed. The framework used (1) a model coupling process bridging WBM and WSM to create a modular hydro-economic model (MHEM), (2) a multi-objective optimization, and (3) an anneal scheduling for scenario optimization. The framework demonstrated its competency in identifying cause–effect/interaction flows (bridges) between WBM and WSM to design MHEM to simulate optimized scenarios; for the case study, the multi-objective optimization was met for all wetland zones. Results suggested a flexible consideration of management scales for optimization, i.e. hydrologic optimization at a zone level and net benefit optimization at a Park level. Our framework is applicable to supporting complex wetland decisions considering multiple objectives.  相似文献   
295.
The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and hemicellulose contents supported growth of larger methanogen populations that resulted in higher methane yield.  相似文献   
296.
297.
ABSTRACT: Storm runoff from four characteristic types of residential roofs and incident rainwater were monitored for 47 storm events over a six-month period at Nacogdoches, Texas, to study water quality conditions for 20 element and four chemical variables. The total element concentration in storm runoff from each roof type was greater than that of rainwater in the open. Differences in element concentrations in storm runoff among the four roof types were statistically significant (α≤ 0.05) with the differences for the wood shingle roof being the greatest and that for terra cotta clay roof being the least. The median concentrations of four element variables exceeded the Texas surface water quality standards, while 12 variables exceeded the standards at least one time in all samples collected. Zinc concentrations violated the Standard ranging from 85.7 percent of the samples for the wood shingle roof to 66.0 percent for the composite shingle, the greatest exceedances of all 24 variables studied. Storm characteristics and gutter maintenance level had some effects on these water quality conditions. The study suggested that roof types can be important to water pollution management programs. More detailed studies on roof water quality in major municipalities are required.  相似文献   
298.
ABSTRACT: The Floridan Aquifer is the primary source of water in the coastal area of Santa Rosa County, Florida. In order to optimize well field design and analyze aquifer stress problems, the USGS MODFLOW code (McDonald and Harbaugh, 1988) is applied to develop a numerical computer model of the aquifer. The Geographical Information System (GIS) is the primary tool used in the development of the model grid, performance of the modeling procedure, and model analysis. The GIS is used in generating multiple grids in which to simulate both regional scale and local scale flow. The grid topology is recorded in geographic coordinates which facilitates geo-referencing and orientation of the grid to base maps and data coyerages. The GIS allows data transfer from various coverages to the nodes of the block centered grid where hydrogeologic information is stored as attributes to the grid coverage. From this grid coverage, pertinent information is queried within the GIS environment and used to generate the input files for the MODFLOW simulation. After MODFLOW execution, simulated heads and drawdown are imported into the grid coverage where residual error and recharge rates can be calculated. Contoured surfaces are then created for selected data sets including simulated heads, drawdown, residual error, and recharge rates. Model calibration is conducted utilizing the GIS to generate and process data sets associated with model simulations.  相似文献   
299.
Per and polyfluoroalkyl substances (PFAS) are emerging and persistent organic pollutants that have been detected in many environmental media, humans, and wildlife. A common method to effectively remove PFAS from water is adsorption by activated carbon. Preliminary sorption experiments were conducted using five characterized Calgon Corporation coal‐based granular activated carbon (GAC; F100, F200, F816, F300, and F400), one coconut‐based GAC (CBC‐OLC 12 × 30), and one Jacobi Corporation coal‐based GAC (Omni‐G 12 × 40). Sorption of four representative PFAS onto each GAC was measured to select the most favorable carbon sources. F400 and CBC were chosen based on their performance in preliminary PFAS sorption experiments and contrasting properties. Freundlich and Langmuir isotherm models were developed for perfluorooctanoic acid (PFOA) and perfluorooctanoic sulfonate (PFOS) at an initial concentration of 1 mg/L. Sorption capacities were determined for PFOA and PFOS individually and in the mixture. Individual compounds showed higher sorption than when present in the mixture for both PFOA and PFOS. PFOS showed higher sorption than PFOA both individually and in the mixture and F400 showed higher sorption capacity than CBC. The presence of co‐contaminants (kerosene, trichloroethylene, and ethanol), and variations in groundwater conditions (pH, presence of anions, naturally occurring organic matter, and iron oxides) demonstrated limited impact on the sorption of PFAS onto GAC under the experimental conditions tested.  相似文献   
300.
We quantified annual sediment deposition, bank erosion, and sediment budgets in nine riverine wetlands that represented a watershed continuum for 1 year in the unregulated Yampa River drainage basin in Colorado. One site was studied for 2 years to compare responses to peak flow variability. Annual mean sediment deposition ranged from 0.01 kg/m2 along a first-order subalpine stream to 21.8 kg/m2 at a sixth-order alluvial forest. Annual mean riverbank erosion ranged from 3 kg/m-of-bank at the first-order site to 1000 kg/m at the 6th-order site. Total sediment budgets were nearly balanced at six sites, while net export from bank erosion occurred at three sites. Both total sediment deposition (R2 = 0.86, p < 0.01) and bank erosion (R2 = 0.77, p < 0.01) were strongly related to bankfull height, and channel sinuosity and valley confinement helped to explain additional variability among sites. The texture and organic fraction of eroded and deposited sediment were relatively similar in most sites and varied among sites by watershed position. Our results indicate that bank erosion generally balances sediment deposition in riverine wetlands, and we found no distinct zones of sediment retention versus export on a watershed continuum. Zones of apparent disequilibrium can occur in unregulated rivers due to factors such as incised channels, beaver activity, and cattle grazing. A primary function of many western riverine wetlands is sediment exchange, not retention, which may operate by transforming materials and compounds in temporary sediment pools on floodplains. These results are considered in the context of the Hydrogeomorphic approach being implemented by the U.S. government for wetland resource management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号