首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1107篇
  免费   42篇
  国内免费   24篇
安全科学   56篇
废物处理   63篇
环保管理   299篇
综合类   101篇
基础理论   296篇
环境理论   4篇
污染及防治   221篇
评价与监测   76篇
社会与环境   48篇
灾害及防治   9篇
  2023年   14篇
  2022年   14篇
  2021年   17篇
  2020年   24篇
  2019年   16篇
  2018年   44篇
  2017年   44篇
  2016年   64篇
  2015年   46篇
  2014年   44篇
  2013年   85篇
  2012年   65篇
  2011年   88篇
  2010年   52篇
  2009年   57篇
  2008年   59篇
  2007年   63篇
  2006年   49篇
  2005年   31篇
  2004年   44篇
  2003年   34篇
  2002年   30篇
  2001年   14篇
  2000年   18篇
  1999年   17篇
  1998年   18篇
  1997年   19篇
  1996年   15篇
  1995年   8篇
  1994年   3篇
  1993年   12篇
  1992年   9篇
  1991年   8篇
  1990年   3篇
  1989年   3篇
  1988年   4篇
  1987年   8篇
  1986年   6篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   6篇
  1978年   2篇
  1976年   1篇
排序方式: 共有1173条查询结果,搜索用时 553 毫秒
681.
Discharges of coloured effluents into surface waters provide conspicuous evidence of the impact of industry on the environment. The textile industry is an obvious candidate for sources of such discharges. Conventional treatment methods appear to alleviate this situation by removing colour, however the affect on toxicity is less obvious. The objective of this study was to examine the changes in effluent toxicity during the course of two alternative wastewater treatment methods, ozonation and electrochemical oxidation, using a novel toxicity biosensor, GreenScreen EM. The biosensor is capable of measuring both general acute toxicity (cytotoxicity), and more specifically genotoxicity, that is damage to a cell's DNA structure, replication or distribution, caused by substances that may be mutagenic and/or carcinogenic. The biosensor utilises a modified strain of the brewers yeast Saccharomyces cerevisiae, incorporating a gene encoding green fluorescent protein (GFP) linked to the inducible promoter of the DNA damage responsive RAD54 gene. Upon exposure to a genotoxin, the production of GFP is up-regulated in parallel with RAD54, and the resulting cellular fluorescence provides a measure of genotoxicity. Acute toxicity is simultaneously determined by monitoring relative total growth of the cell culture during incubation. The results presented in this paper show that a reduction in colouration does not necessarily correspond to a reduction in effluent toxicity.  相似文献   
682.
Concentrations of dissolved and particulate Cd, Cu, Pb and Zn were determined in samples collected in summer 1998 from the lower reaches of six major Eurasian arctic rivers: the Onega, Severnaya Dvina, Mezen, Pechora, Ob and Yenisey. These data comprise some of the earliest measurements of trace metals in Eurasian arctic rivers above the estuaries using recognized clean techniques. Significant (α = 0.05) differences were observed among mean concentrations of particulate metals in the individual rivers (F ≤ 0.006), with highest levels overall observed in the Severnaya Dvina and Yenisey. No significant differences were observed among mean concentrations of dissolved metals in the individual rivers (F = 0.10-0.84). Contributions from anthropogenic sources are suggested by comparison of trace metal ratios in the samples to crustal abundances. These results establish a baseline for assessing future responses of Eurasian arctic river systems to climate-related environmental changes and shifting patterns of pollutant discharge.  相似文献   
683.
684.
We measured mercury speciation in coastal rainwater samples from Monterey Bay, California in 2007–2008 to investigate the source of monomethylmercury (MMHg) in rainwater and determine the relative importance of wet atmospheric deposition of MMHg to coastal waters compared to other sources on the central Pacific coast. Total mercury (HgT) ranged from 10 to 88 pM, with a sample mean ± standard deviation of 33 ± 22 pM (volume-weighted average 29 pM). MMHg concentrations ranged from 0.12 to 2.3 pM with a sample mean of 0.7 ± 0.5 pM (volume-weighted average 0.68 pM). Reactive mercury (HgR) concentrations ranged from 0.87 to 47 pM, sample mean 7.8 ± 8.3 pM (volume-weighted average 6.1 pM). Acetate concentration in rainwater, measured in a subset of samples, ranged from 0.34 to 3.1 μM, and averaged 1.6 ± 0.9 μM (volume-weighted average 1.3 μM). Dimethylmercury (DMHg) concentrations were below the limit of detection in air (<0.01 ng m?3) and rainwater (<0.05 pM). Despite previous suggestions that DMHg in upwelled ocean waters is a potential source of MMHg in coastal rainwater, MMHg in rain was not related to coastal upwelling seasons or surface water DMHg concentrations. Instead, a multiple linear regression analysis demonstrated that MMHg concentrations were positively and significantly correlated (p = 0.002, adjusted R2 = 0.88) with those of acetate and HgR. These data appear to support previous suggestions that the aqueous phase methylation of Hg(II) by acetate may be the source of MMHg in rainwater, but imply that acetate concentrations in rainwater play a more important role relative to HgR than previously hypothesized. However, the calculated chemical speciation of Hg(II) in rainwater and the minimal predicted complexation of Hg(II) by acetate suggest that the aqueous phase methylation of Hg(II) by acetate is unlikely to account for the MMHg found in precipitation, or that the mechanism of this reaction in the atmosphere differs from that previously reported (Gardfeldt et al., 2003).  相似文献   
685.
Understanding plant behaviour in polluted soils is critical for the sustainable remediation of metal-polluted sites including abandoned mines. Post-operational and abandoned metal mines particularly in semi-arid and arid zones are one of the major sources of pollution by soil erosion or plant hyperaccumulation bringing ecological impacts. We have selected from the literature 157 species belonging to 50 families to present a global overview of ‘plants under action’ against heavy metal pollution. Generally, all species of plants that are drought, salt and metal tolerant are candidates of interest to deal with harsh environmental conditions, particularly at semi-arid and arid mine sites. Pioneer metallophytes namely Atriplex nummularia, Atriplex semibaccata, Salsola kali, Phragmites australis and Medicago sativa, representing the taxonomic orders Caryophyllales, Poales and Fabales are evaluated in terms of phytoremediation in this review. Phytoremediation processes, microbial and algal bioremediation, the use and implication of tissue culture and biotechnology are critically examined. Overall, an integration of available remediation plant-based technologies, referred to here as ‘integrated remediation technology,’ is proposed to be one of the possible ways ahead to effectively address problems of toxic heavy metal pollution.
Graphical abstract Integrated remediation technology (IRT) in metal-contaminated semi-arid and arid conditions. The hexagonal red line represents an IRT concept based on remediation decisions by combination of plants and microbial processes.
  相似文献   
686.
A series of polyhydroxyalkanoates (PHA), all containing 1% nucleating agent but varying in structure, were melt-processed into films through single screw extrusion techniques. This series consisted of three polyhydroxybutyrate (PHB) and three polyhydroxybutyrate-valerate (PHBV) resins with varying valerate content. Processing parameters of temperature in the barrel (165–173 °C) and chill rolls (60 °C) were optimized to obtain cast films. The gel-permeation chromatography (GPC) results showed a loss of 8–19% of the polymer’s initial molecular weight due to extrusion processing. Modulated differential scanning calorimetry (MDSC) displayed glass transition temperatures of the films ranging from −4.6 to 6.7 °C depending on the amount of crystallinity in the film. DSC data were also used to calculate the percent crystallinity of each sample and slightly higher crystallinity was observed in the PHBV series of samples. X-ray diffraction patterns did not vary significantly for any of the samples and crystallinity was confirmed with X-ray data. Dynamic mechanical analysis (DMA) verified the glass transition trends for the films from DSC while loss modulus (E′) reported at 20 °C showed that the PHBV (3,950–3,600 MPa) had the higher E′ values than the PHB (3,500–2,698 MPa) samples. The Young’s modulus values of the PHB and PHBV samples ranged from 700 to 900 MPa and 900 to 1,500 MPa, respectively. Polarized light microscopy images revealed gel particles in the films processed through single-screw extrusion, which may have caused diminished Young’s modulus and tensile strength of these films. The PHBV film samples exhibited the greatest barrier properties to oxygen and water vapor when compared to the PHB film samples. The average oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) for the PHBV samples was 247 (cc-mil/m2-day) and 118 (g-mil/m2-day), respectively; while the average OTR and WVTR for the PHB samples was 350 (cc-mil/m2-day) and 178 (g-mil/m2-day), respectively. Biodegradation data of the films in the marine environment demonstrated that all PHA film samples achieved a minimum of 70% mineralization in 40 days when run in accordance with ASTM 6691. For static and dynamic incubation experiments in seawater, microbial action resulting in weight loss as a function of time showed all samples to be highly biodegradable and correlated with the ASTM 6691 biodegradation data.  相似文献   
687.
The ability of natural attenuation to mitigate agricultural nitrate contamination in recharging aquifers was investigated in four important agricultural settings in the United States. The study used laboratory analyses, field measurements, and flow and transport modeling for monitoring well transects (0.5 to 2.5 km in length) in the San Joaquin watershed, California, the Elkhorn watershed, Nebraska, the Yakima watershed, Washington, and the Chester watershed, Maryland. Ground water analyses included major ion chemistry, dissolved gases, nitrogen and oxygen stable isotopes, and estimates of recharge date. Sediment analyses included potential electron donors and stable nitrogen and carbon isotopes. Within each site and among aquifer-based medians, dissolved oxygen decreases with ground water age, and excess N(2) from denitrification increases with age. Stable isotopes and excess N(2) imply minimal denitrifying activity at the Maryland and Washington sites, partial denitrification at the California site, and total denitrification across portions of the Nebraska site. At all sites, recharging electron donor concentrations are not sufficient to account for the losses of dissolved oxygen and nitrate, implying that relict, solid phase electron donors drive redox reactions. Zero-order rates of denitrification range from 0 to 0.14 micromol N L(-1)d(-1), comparable to observations of other studies using the same methods. Many values reported in the literature are, however, orders of magnitude higher, which is attributed to a combination of method limitations and bias for selection of sites with rapid denitrification. In the shallow aquifers below these agricultural fields, denitrification is limited in extent and will require residence times of decades or longer to mitigate modern nitrate contamination.  相似文献   
688.
In 2006, we used the U.S. Coast Guard’s Automatic Identification System (AIS) to describe patterns of large commercial ship traffic within a U.S. National Marine Sanctuary located off the coast of Massachusetts. We found that 541 large commercial vessels transited the greater sanctuary 3413 times during the year. Cargo ships, tankers, and tug/tows constituted 78% of the vessels and 82% of the total transits. Cargo ships, tankers, and cruise ships predominantly used the designated Boston Traffic Separation Scheme, while tug/tow traffic was concentrated in the western and northern portions of the sanctuary. We combined AIS data with low-frequency acoustic data from an array of nine autonomous recording units analyzed for 2 months in 2006. Analysis of received sound levels (10–1000 Hz, root-mean-square pressure re 1 μPa ± SE) averaged 119.5 ± 0.3 dB at high-traffic locations. High-traffic locations experienced double the acoustic power of less trafficked locations for the majority of the time period analyzed. Average source level estimates (71–141 Hz, root-mean-square pressure re 1 μPa ± SE) for individual vessels ranged from 158 ± 2 dB (research vessel) to 186 ± 2 dB (oil tanker). Tankers were estimated to contribute 2 times more acoustic power to the region than cargo ships, and more than 100 times more than research vessels. Our results indicate that noise produced by large commercial vessels was at levels and within frequencies that warrant concern among managers regarding the ability of endangered whales to maintain acoustic contact within greater sanctuary waters. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
689.
Liu S  Lim M  Fabris R  Chow C  Chiang K  Drikas M  Amal R 《Chemosphere》2008,72(2):263-271
The photocatalytic removal of humic acid (HA) using TiO2 under UVA irradiation was examined by monitoring changes in the UV254 absorbance, dissolved organic carbon (DOC) concentration, apparent molecular weight distribution, and trihalomethane formation potentials (THMFPs) over treatment time. A resin fractionation technique in which the samples were fractionated into four components: very hydrophobic acids (VHA), slightly hydrophobic acids, hydrophilic charged (CHA) and hydrophilic neutral (NEU) was also employed to elucidate the changes in the chemical nature of the HA components during treatment. The UVA/TiO2 process was found to be effective in removing more than 80% DOC and 90% UV254 absorbance. The THMFPs of samples were decreased to below 20 μg l−1 after treatments, which demonstrate the potential to meet increasingly stringent regulatory level of trihalomethanes in water. Resin fractionation analysis showed that the VHA fraction was decreased considerably as a result of photocatalytic treatments, forming CHA intermediates which were further degraded with increased irradiation time. The NEU fraction, which comprised of non-UV-absorbing low molecular weight compounds, was found to be the most persistent component.  相似文献   
690.
Eighteen Dutch soils were extracted in aqueous solutions at varying pH. Extracts were analyzed for Cd, Cu, Ni, Pb and Zn by ICP-AES. Extract dissolved organic carbon (DOC) was also concentrated onto a macroreticular resin and fractionation into three operationally defined fractions: hydrophilic acids (Hyd), humic acids (HA) and fulvic acids (FA). In this manner, change in absolute solution concentration and relative percentage for each fraction could be calculated as a function of extraction equilibrium pH. The soils were also analyzed for solid phase total organic carbon and total recoverable metals (EPA Method 3051). Partitioning coefficients were calculated for the metals and organic carbon (OC) based on solid phase concentrations (less the metal or OC removed by the extraction) divided by solution concentrations. Cu and Pb concentrations in solution as a function of extract equilibrium pH are greatest at low and high pH resulting in parabolic desorption/dissolution curves. While processes such as proton competition and proton promoted dissolution can account for high solution metal concentrations at low pH, these processes cannot account for higher Cu and Pb concentrations at high pH. DOC increases with increasing pH, concurrently with the increase in Cu and Pb solution concentrations. While the absolute concentrations of FA and HA generally increase with increasing pH, the relative proportional increase is greatest for HA . Variation in HA concentrations spans three orders of magnitude while FA concentrations vary an order of magnitude over the pH range examined. Correlation analysis strongly suggests that HA plays a major role in increasing the concentration of solution Cu and Pb with increasing pH in the 18 soils studied. The percentage of the OC that was due to FA was nearly constant over a wide pH range although the FA concentration increased with increasing pH and its concentration was greater than that of the HA fraction at lower pH values (pH = 3-5). Thus, in more acidic environments, FA may play a larger role than HA in governing organo-metallic interactions. For Cd, Ni, and Zn, the desorption/dissolution pattern shows high metal solution concentrations at low pH with slight increases in solution concentrations at extremely high pH values (pH>10). The results presented here suggest that the effects of dissolved organic carbon on the mobilization of Cd, Ni, and Zn may only occur in systems governed by very high pH. At high pH, it is difficult to distinguish in this study whether the slightly increased solution-phase concentrations of these cations is due to DOC or hydrolysis reactions. These high pH environments would rarely occur in natural settings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号