首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   1篇
  国内免费   1篇
安全科学   1篇
废物处理   7篇
环保管理   11篇
综合类   8篇
基础理论   8篇
污染及防治   37篇
评价与监测   14篇
社会与环境   9篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   1篇
  2017年   3篇
  2016年   7篇
  2015年   2篇
  2014年   3篇
  2013年   12篇
  2012年   2篇
  2011年   8篇
  2010年   9篇
  2009年   4篇
  2008年   4篇
  2007年   7篇
  2006年   5篇
  2005年   7篇
  2004年   1篇
  2003年   4篇
  2002年   3篇
  2000年   2篇
  1998年   1篇
  1993年   1篇
排序方式: 共有95条查询结果,搜索用时 15 毫秒
21.
The International Union for Conservation of Nature (IUCN) classifies protected areas into six categories, ranging from strict nature reserves to areas where multiple human uses are permitted. In the past, many researchers have questioned the effectiveness of multiple-use areas, fueling an unresolved debate regarding their conservation value. The literature so far has been inconclusive: although several studies have found that strictly protected areas are more effective, others have found the opposite, and yet others that the two types do not differ. To help resolve this debate, we reviewed the literature on protected areas and conducted our own analysis using > 19 000 terrestrial protected areas worldwide. We found that the differences between strictly protected areas and areas in which multiple human uses are permitted are often small and not statistically significant. Although the effectiveness of protected areas worldwide varies, other factors, besides their assigned IUCN category, are likely to be driving this pattern.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01426-5) contains supplementary material, which is available to authorized users.  相似文献   
22.
The use of Conductive-Diamond Electrochemical Oxidation (CDEO) and Sonoelectrochemical Oxidation (CDSEO) has been evaluated for the removal of caffeine of wastewater. Effects of initial concentration, current density and supporting electrolyte on the process efficiency are assessed. Results show that caffeine is very efficiently removed with CDEO and that depletion of caffeine has two stages depending on its concentration. At low concentrations, opposite to what it is expected in a mass-transfer controlled process, the efficiency increases with current density very significantly, suggesting a very important role of mediated oxidation processes on the removal of caffeine. In addition, the removal of caffeine is faster than TOC, indicating the formation of reaction intermediates. The number and relative abundance of them depend on the operating conditions and supporting electrolyte used. In chloride media, removal of caffeine is faster and more efficiently, although the occurrence of more intermediates takes place. CDSEO does not increase the efficiency of caffeine removal, but it affects to the formation of intermediates. A detailed characterization of intermediates by liquid chromatography time-of-flight mass spectrometry seems to indicate that the degradation of caffeine by CDEO follows an oxidation pathway similar to mechanism proposed by other advanced oxidation processes.  相似文献   
23.
ABSTRACT

Road traffic is one of the main sources of particulate matter (PM) in the atmosphere. Despite its importance, there are significant challenges in the quantitative evaluation of its contribution to airborne concentrations. In order to propose effective mitigation scenarios, the proportions of PM traffic emissions, whether they are exhaust or non-exhaust emissions, should be evaluated for any given geographical location. In this work, we report on the first study to evaluate particulate matter emissions from all registered heavy duty diesel vehicles in Qatar. The study was applied to an active traffic zone in urban Doha. Dust samples were collected and characterized for their shape and size distribution. It was found that the particle size ranged from few to 600 μm with the dominance of small size fraction (less than 100 μm). In-situ elemental composition analysis was conducted for side and main roads traffic dust, and compared with non-traffic PM. The results were used for the evaluation of the enrichment factor and preliminary source apportionment. The enrichment factor of anthropogenic elements amounted to 350. The traffic source based on sulfur elemental fingerprint was almost 5 times higher in main roads compared with the samples from non-traffic locations. Moreover, PM exhaust and non-exhaust emissions (tyre wear, brake wear and road dust resuspension) were evaluated. It was found that the majority of the dust was generated from tyre wear with 33% followed by road dust resuspension (31%), brake wear (19%) and then exhaust emissions with 17%. The low contribution of exhaust PM10 emissions was due to the fact that the majority of the registered vehicle models were recently made and equipped with efficient exhaust PM reduction technologies.

Implication: This study reports on the first results related to the evaluation of PM emission from all registered diesel heavy duty vehicles in Qatar. In-situ XRF elemental analysis from main, side roads as well as non-traffic dust samples was conducted. Several characterization techniques were implemented and the results show that the majority of the dust was generated from tyre wear, followed by road dust resuspension and then brake wear; whereas exhaust emissions were tremendously reduced since the majority of the registered vehicle models were recently made and equipped with efficient exhaust PM reduction technologies. This implies that policy makers should place stringent measures on old vehicle license renewals and encourage the use of metro and public transportation.  相似文献   
24.
CL-20 is a relatively new energetic compound with applications in explosive and propellant formulations. Currently, information about the fate of CL-20 in ecological systems is scarce. The aim of this study is to evaluate the biodegradability of CL-20 in soil environments. Four soils were used where initial CL-20 concentrations (above water solubility) ranged from 125 to 1500 mg of CL-20 per kg dry soil (corresponding to the concentrations derived from unexploded ordnance, low order detonation, or manufacturing spills). CL-20 appears to be biodegradable in soil under anaerobic conditions, and additions of organic substrates can substantially accelerate this process. However, CL-20 is not degraded in soil under aerobic conditions kept in the dark at temperatures up to 30 degrees C without organic amendments. Additions of starch or cellulose promote the biodegradation of CL-20 under aerobic conditions. Soil microbial community mediated biodegradation and plant uptake appears to enhance CL-20 biodegradation, the latter suggesting a possible route for CL-20 to entry in the food chain.  相似文献   
25.
Passive samplers with two different collection substrates were used to obtain an average ozone concentration for 1 month during the summer of 2002 for each South Carolina county. One sampler contained a filter coated with indigo carmine, whose color fades when exposed to ozone. The fading was measured by reflectance spectroscopy. The other sampler contained filters that were coated with nitrite, which is oxidized to nitrate when exposed to ozone. The nitrate was measured by ion chromatography. Calibration curves were developed for the two methods by comparing color fading from indigo carmine and nitrate ion concentration from the nitrite filter with ambient ozone concentration measured by a co-located reference continuous UV ozone analyzer. These curves were used to calculate integrated ozone concentrations for samplers distributed across South Carolina. Using the indigo carmine method, the average ozone concentrations ranged from 21 to 64 ppb (average = 46 +/- 7.9 ppb, n = 58) across the 46 counties in the state during one summer month of 2002. Concentrations for the same time period from the nitrite-coated filters ranged from 23 to 62 ppb (average = 41 +/- 8.1 ppb, n = 58). Also for the same time period, the 23 continuous UV photometric ozone monitors operated by the South Carolina Department of Health and Environmental Control at sites within 10 miles of some of the passive monitors showed ozone concentrations ranging from 28 to 50 ppb (average = 39 +/- 6.3 ppb, n = 22).  相似文献   
26.
27.
The purpose of this study was to investigate the climate change impacts, vulnerability and adaptive capacity of the electrical energy sector in Cyprus. Spatial vulnerability of the island was assessed using the degree-day indicator to investigate heating and cooling demands in the near future using daily temperature projections from regional climate models (RCMs). Using daily electrical energy consumption data for the present climate, an impact model linking consumption and temperature was constructed and this relationship was projected to the future climate using the data from the RCMs and assuming the same technology use. Our impact model results showed that for the period between November and April (‘cold period’), a decreasing trend in electrical energy consumption is evident due to warmer conditions in the near future, while for the period between May and October (‘warm period’), an increasing trend in electricity consumption is evident as warmer conditions dominate by 2050. Regarding the spatial vulnerability assessment, the cooling degree-day indicator testified that major increases in cooling demand, between 100 and 200 degree-days, are expected in inland and southern regions during the summer in the near future. In addition, increases of about 20–50 degree-days are anticipated during autumn. Conversely, energy demand for heating is projected to decrease during spring and winter, especially in the higher elevation parts of the island. More precisely, reductions of about 30–75 degree-days are projected during spring, while greater reductions of about 60–90 degree-days are expected during winter in heating demand, especially for in the near future. The ability of the energy sector to adapt and follow these changes was deemed to be satisfactory reducing the overall vulnerability of the sector to future climate change.  相似文献   
28.
Tourism is a vital sector of Cyprus economy, attracting millions of tourists every year and providing economic growth and employment for the country. The aim of this study was to investigate the impacts of projected climate change in the tourism industry in Cyprus (Republic of Cyprus) using both “Tourism Climate Index” (TCI) and “Beach Climate Index” (BCI). TCI refers to tourism activities mainly related to sightseeing, nature-based tourism, and religious tourism etc., while BCI represents beach tourism that constitutes 85 % of tourism activities in Cyprus. The projections of climate change impacts in tourism are performed for 2071–2100 period, using regional climate model output employing the A1B greenhouse gas emissions scenario. The 1961–1990 period is used as the control run to compare the respective results of the future projections. The significant warming anticipated in the distant future (increases in annual and summer temperatures close to 4 °C) will have adverse impacts on Cyprus tourism industry regarding sightseeing tourism. TCI results for the distant future period show only acceptable conditions for general tourism activities during summer in contrast with the good/very good conditions in the present climate. Conversely, this type of tourism seems to be benefited in shoulder seasons, i.e., during spring and autumn; TCI and hence tourist activities improve in the distant future in relation to the present climate. On the other hand, concerning beach tourism, future projections indicate that it will not be negatively affected by future climate change and any changes will be positive.  相似文献   
29.
30.
The Mediterranean and neighboring countries are already experiencing a broad range of natural and man-made threats to water security. According to climate projections, the region is at risk due to its pronounced susceptibility to changes in the hydrological budget and extremes. Such changes are expected to have strong impacts on the management of water resources and on key strategic sectors of regional economies. Related developments have an increased capacity to exacerbate tensions, and even intra- and inter-state conflict among social, political, ecological and economic actors. Thus, effective adaptation and prevention policy measures call for multi-disciplinary analysis and action.This review paper presents the current state-of-the-art on research related to climate change impacts upon water resources and security from an ecological, economic and social angle. It provides perspectives for current and upcoming research needs and describes the challenges and potential of integrating and clustering multi-disciplinary research interests in complex and interwoven human-environment systems and its contribution to the upcoming 5th assessment report of the IPCC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号