首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3842篇
  免费   4篇
  国内免费   100篇
安全科学   105篇
废物处理   139篇
环保管理   454篇
综合类   464篇
基础理论   244篇
污染及防治   1734篇
评价与监测   479篇
社会与环境   258篇
灾害及防治   69篇
  2023年   4篇
  2022年   7篇
  2021年   4篇
  2020年   8篇
  2019年   4篇
  2018年   3篇
  2017年   12篇
  2016年   7篇
  2015年   4篇
  2014年   4篇
  2013年   9篇
  2012年   366篇
  2011年   478篇
  2010年   65篇
  2009年   112篇
  2008年   435篇
  2007年   409篇
  2006年   346篇
  2005年   258篇
  2004年   277篇
  2003年   222篇
  2002年   180篇
  2001年   128篇
  2000年   115篇
  1999年   40篇
  1998年   11篇
  1997年   16篇
  1996年   15篇
  1995年   37篇
  1994年   19篇
  1993年   19篇
  1992年   29篇
  1991年   27篇
  1990年   34篇
  1989年   19篇
  1988年   29篇
  1987年   35篇
  1986年   10篇
  1985年   22篇
  1984年   26篇
  1983年   18篇
  1982年   20篇
  1981年   15篇
  1980年   14篇
  1979年   15篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1974年   8篇
  1973年   1篇
排序方式: 共有3946条查询结果,搜索用时 435 毫秒
331.
The KBS-3 underground nuclear waste repository concept designed by the Swedish Nuclear Fuel and Waste Management Co. (SKB) includes a bentonite buffer barrier surrounding the copper canisters and the iron insert where spent nuclear fuel will be placed. Bentonite is also part of the backfill material used to seal the access and deposition tunnels of the repository. The bentonite barrier has three main safety functions: to ensure the physical stability of the canister, to retard the intrusion of groundwater to the canisters, and in case of canister failure, to retard the migration of radionuclides to the geosphere. Laboratory experiments (< 10 years long) have provided evidence of the control exerted by accessory minerals and clay surfaces on the pore water chemistry. The evolution of the pore water chemistry will be a primordial factor on the long-term stability of the bentonite barrier, which is a key issue in the safety assessments of the KBS-3 concept.In this work we aim to study the long-term geochemical evolution of bentonite and its pore water in the evolving geochemical environment due to climate change. In order to do this, reactive transport simulations are used to predict the interaction between groundwater and bentonite which is simulated following two different pathways: (1) groundwater flow through the backfill in the deposition tunnels, eventually reaching the top of the deposition hole, and (2) direct connection between groundwater and bentonite rings through fractures in the granite crosscutting the deposition hole. The influence of changes in climate has been tested using three different waters interacting with the bentonite: present-day groundwater, water derived from ice melting, and deep-seated brine. Two commercial bentonites have been considered as buffer material, MX-80 and Deponit CA-N, and one natural clay (Friedland type) for the backfill. They show differences in the composition of the exchangeable cations and in the accessory mineral content. Results from the simulations indicate that pore water chemistry is controlled by the equilibrium with the accessory minerals, especially carbonates. pH is buffered by precipitation/dissolution of calcite and dolomite, when present. The equilibrium of these minerals is deeply influenced by gypsum dissolution and cation exchange reactions in the smectite interlayer. If carbonate minerals are initially absent in bentonite, pH is then controlled by surface acidity reactions in the hydroxyl groups at the edge sites of the clay fraction, although its buffering capacity is not as strong as the equilibrium with carbonate minerals. The redox capacity of the bentonite pore water system is mainly controlled by Fe(II)-bearing minerals (pyrite and siderite). Changes in the groundwater composition lead to variations in the cation exchange occupancy, and dissolution–precipitation of carbonate minerals and gypsum. The most significant changes in the evolution of the system are predicted when ice-melting water, which is highly diluted and alkaline, enters into the system. In this case, the dissolution of carbonate minerals is enhanced, increasing pH in the bentonite pore water. Moreover, a rapid change in the population of exchange sites in the smectite is expected due to the replacement of Na for Ca.  相似文献   
332.
Bioleaching of spent lithium ion secondary batteries, containing LiCoO2, was attempted in this investigation. The present study was carried out using chemolithotrophic and acidophilic bacteria Acidithiobacillus ferrooxidans, which utilized elemental sulfur and ferrous ion as the energy source to produce metabolites like sulfuric acids and ferric ion in the leaching medium. These metabolites helped dissolve metals from spent batteries. Bio-dissolution of cobalt was found to be faster than lithium. The effect of initial Fe(II) concentration, initial pH and solid/liquid (w/v) ratio during bioleaching of spent battery wastes were studied in detail. Higher Fe(II) concentration showed a decrease in dissolution due co-precipitation of Fe(III) with the metals in the residues. The higher solid/liquid ratio (w/v) also affected the metal dissolution by arresting the cell growth due to increased metal concentration in the waste sample. An EDXA mapping was carried out to compare the solubility of both cobalt and lithium, and the slow dissolution rate was clearly found from the figures.  相似文献   
333.
There are numerous problems yet to be solved in waste management and although efforts towards waste recovery and recycling have been made, landfills are still the most common method used in the EU and many other industrialised countries. Thermal disposal, particularly incineration, is a tested and viable alternative. In 2004, only 11% of the annual waste production of Italy was incinerated. Sicily, with over five million inhabitants, is the second largest region in Italy where waste management is now a critical problem. The use of landfills can no longer be considered a satisfactory environmental solution; therefore, new methods have to be chosen and waste-to-energy plants could provide an answer. This paper gives details of municipal solid waste management in Sicily following a new Waste Management Plan. Four waste-to-energy plants will generate electricity through a steam cycle; the feedstock will become the residue after material recovery, which is calculated as 20-40% weight of the collected municipal solid waste.  相似文献   
334.
Optimizing a recycling process of SMC composite waste   总被引:1,自引:0,他引:1  
Investigations about the recycling of sheet moulding compounds (SMC) waste as incorporation material for thermoplastic polymer matrix are reported in this paper. A new efficient process is developed in order to strongly increase the reinforcement glass fraction of SMC leading to good mechanical performance of the new thermoplastic compounds. The overall process is composed of two main steps: mechanical and chemical. The second stage is characterised in terms of optimization and capability by means of experimental design and statistical process control techniques for finding the optimal chemical conditions and validating the process.  相似文献   
335.
Influence of aeration rate on nitrogen dynamics during composting   总被引:6,自引:0,他引:6  
The paper aimed to study the influence of aeration rate on nitrogen dynamics during composting of wastewater sludge with wood chips. Wastewater sludge was sampled at a pig slaughterhouse 24h before each composting experiment, and mixtures were made at the same mass ratio. Six composting experiments were performed in a lab reactor (300 L) under forced aeration. Aeration flow was constant throughout the experiment and aeration rates applied ranged between 1.69 and 16.63 L/h/kg DM of mixture. Material temperature and oxygen consumption were monitored continuously. Nitrogen losses in leachates as organic and total ammoniacal nitrogen, nitrite and nitrate, and losses in exhaust gases as ammonia were measured daily. Concentrations of total carbon and nitrogen i.e., organic nitrogen, total ammoniacal nitrogen, and nitrite and nitrate were measured in the initial substrates and in the composted materials. The results showed that organic nitrogen, which was released as NH4+/NH3 by ammonification, was closely correlated to the ratio of carbon removed from the material to TC/N(org) of the initial substrates. The increase of aeration was responsible for the increase in ammonia emissions and for the decrease in nitrogen losses through leaching. At high aeration rates, losses of nitrogen in leachates and as ammonia in exhaust gases accounted for 90-99% of the nitrogen removed from the material. At low aeration rates, those accounted for 47-85% of the nitrogen removed from the material. The highest concentrations of total ammoniacal nitrogen in composts occurred at the lowest aeration rate. Due to the correlation of ammonification with biodegradation and to the measurements of losses in leachates and in exhaust gases, the pool NH4+/NH3 in the composting material was calculated as a function of time. The nitrification rate was found to be proportional to the mean content of NH4+/NH3 in the material, i.e., initial NH4+/NH3 plus NH4+/NH3 released by ammonification minus losses in leachates and in exhaust gases. The aeration rate was shown to be a main parameter affecting nitrogen dynamics during composting since it controlled the ammonification, the ammonia emission and the nitrification processes.  相似文献   
336.
This paper presents three spatial decision-support models (Boolean logic, binary evidence and overlapping index of multiple class maps) to perform a land suitability analysis for sanitary landfill siting. The study was carried out in the basin of Lake Cuitzeo, Mexico, with the objective of locating areas that comply with environmental regulations and with the inter-municipality criterion, i.e., that are accessible by at least two municipalities. Biophysical and socio-economic data were processed in a Geographic Information System (GIS). The three models differ in their complexity and restrictiveness. The Boolean logic model is easier to apply and more restrictive than the other two, because it is based on the assessment of single attributes. On the other hand, the binary data and overlapping index methods are relatively more complex because they require attribute weighting. The results showed that 23 of the 28 municipalities included in the basin have at least one area that was classified as highly suitable. The most suitable areas covered from 63.8 to 204.5 km(2) (from 1.5% to 5%), and they are not distributed homogeneously, but clustered around four main sites. The larger and most suitable of these sites is located in the central part of the basin, and it can be accessed by five of the most densely populated municipalities. The proposed approach represents a low-cost alternative to support a common spatial decision-making process in developing countries.  相似文献   
337.
In landfill, high temperature levels come from aerobic reactions inside the waste surface layer. They are known to make anaerobic processes more reliable, by partial removal of easily biodegradable substrates. Aerobic biodegradation of the main components of biodegradable matter (paper and cardboard waste, food and yard waste) is considered. In this paper, two models which take into account the effect of moisture on aerobic biodegradation kinetics are discussed. The first one (Model A) is a simple, first order, substrate-related model, which assumes that substrate hydrolysis is the limiting step of the process. The second one (Model B) is a biomass-dependant model, considering biological growth processes. Respirometric experiments were performed in order to evaluate the efficiency of each model. The biological oxygen demands of shredded paper and cardboard samples and of food and yard waste samples prepared at various initial water contents were measured. These experimental data were used to identify model parameters. Model A, which includes moisture dependency on the maximum amount of biodegraded matter, is relevant for paper and cardboard biodegradation. On the other hand, Model B, including moisture effect on the growth rate of biomass is suitable to describe food and yard waste biodegradation.  相似文献   
338.
In addition to methane (CH(4)) and carbon dioxide (CO(2)), landfill gas may contain more than 200 non-methane organic compounds (NMOCs) including C(2+)-alkanes, aromatics, and halogenated hydrocarbons. Although the trace components make up less than 1% v/v of typical landfill gas, they may exert a disproportionate environmental burden. The objective of this work was to study the dynamics of CH(4) and NMOCs in the landfill cover soils overlying two types of gas collection systems: a conventional gas collection system with vertical wells and an innovative horizontal gas collection layer consisting of permeable gravel with a geomembrane above it. The 47 NMOCs quantified in the landfill gas samples included primarily alkanes (C(2)-C(10)), alkenes (C(2)-C(4)), halogenated hydrocarbons (including (hydro)chlorofluorocarbons ((H)CFCs)), and aromatic hydrocarbons (BTEXs). In general, both CH(4) and NMOC fluxes were all very small with positive and negative fluxes. The highest percentages of positive fluxes in this study (considering all quantified species) were observed at the hotspots, located mainly along cell perimeters of the conventional cell. The capacity of the cover soil for NMOC oxidation was investigated in microcosms incubated with CH(4) and oxygen (O(2)). The cover soil showed a relatively high capacity for CH(4) oxidation and simultaneous co-oxidation of the halogenated aliphatic compounds, especially at the conventional cell. Fully substituted carbons (TeCM, PCE, CFC-11, CFC-12, CFC-113, HFC-134a, and HCFC-141b) were not degraded in the presence of CH(4) and O(2). Benzene and toluene were also degraded with relative high rates. This study demonstrates that landfill soil covers show a significant potential for CH(4) oxidation and co-oxidation of NMOCs.  相似文献   
339.
The "Measured Annual Nutrient loads from AGricultural Environments" (MANAGE) database was developed to be a readily accessible, easily queried database of site characteristic and field-scale nutrient export data. The original version of MANAGE, which drew heavily from an early 1980s compilation of nutrient export data, created an electronic database with nutrient load data and corresponding site characteristics from 40 studies on agricultural (cultivated and pasture/range) land uses. In the current update, N and P load data from 15 additional studies of agricultural runoff were included along with N and P concentration data for all 55 studies. The database now contains 1677 watershed years of data for various agricultural land uses (703 for pasture/rangeland; 333 for corn; 291 for various crop rotations; 177 for wheat/oats; and 4-33 yr for barley, citrus, vegetables, sorghum, soybeans, cotton, fallow, and peanuts). Across all land uses, annual runoff loads averaged 14.2 kg ha(-1) for total N and 2.2 kg ha(-1) for total P. On average, these losses represented 10 to 25% of applied fertilizer N and 4 to 9% of applied fertilizer P. Although such statistics produce interesting generalities across a wide range of land use, management, and climatic conditions, regional crop-specific analyses should be conducted to guide regulatory and programmatic decisions. With this update, MANAGE contains data from a vast majority of published peer-reviewed N and P export studies on homogeneous agricultural land uses in the USA under natural rainfall-runoff conditions and thus provides necessary data for modeling and decision-making related to agricultural runoff. The current version can be downloaded at http://www.ars.usda.gov/spa/manage-nutrient.  相似文献   
340.
To assess the presence of three gastroenteritis viruses responsible for human acute gastroenteritis in surface water, a 1-year study was carried out in the city of Beijing, China. A total of 108 urban surface water samples were collected from nine collection sites which were defined with a global positioning system in rivers or lakes from September 2006 to August 2007. The water samples were subjected to virus concentration using an HA electronegative filter, followed by polymerase chain reaction (PCR) for rotavirus (RV) astrovirus (AV), and norovirus (NV). It showed that the number of viruses detected in water samples from different sites was variable, totaling 63 virus strains, with rotavirus (48.1%) verified as the most prevalent detected, followed by astrovirus (AV, 5.6%), and norovirus (NV, 4.6%). RV was also quantified by real-time PCR and the concentration of RV ranged from 0 to 18.27 genome copies·L(-1). And the distributions of RV in surface water were abundant in cold weather (from September to February) while less prevailing in warm weather (from March to August). The high detection rate of RV we encountered in this study provided convincing evidence that RV circulated at a certain frequency in the Beijing population. There was no statistically significant correlation between RV levels and both fecal coliform (R (2)?=?0.02) and Enterococcus faecalis (R (2)?=?0.02) densities. Our study suggests prolonged virus persistence in aquatic environments and emphasizes the enteric virus group as the most reliable for environmental monitoring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号