首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41799篇
  免费   467篇
  国内免费   573篇
安全科学   1290篇
废物处理   1851篇
环保管理   5402篇
综合类   6830篇
基础理论   11141篇
环境理论   22篇
污染及防治   10908篇
评价与监测   2775篇
社会与环境   2350篇
灾害及防治   270篇
  2022年   402篇
  2021年   415篇
  2020年   318篇
  2019年   390篇
  2018年   636篇
  2017年   641篇
  2016年   1007篇
  2015年   724篇
  2014年   1124篇
  2013年   3314篇
  2012年   1362篇
  2011年   1866篇
  2010年   1527篇
  2009年   1539篇
  2008年   1895篇
  2007年   1938篇
  2006年   1709篇
  2005年   1422篇
  2004年   1382篇
  2003年   1417篇
  2002年   1279篇
  2001年   1698篇
  2000年   1164篇
  1999年   712篇
  1998年   518篇
  1997年   500篇
  1996年   518篇
  1995年   595篇
  1994年   603篇
  1993年   513篇
  1992年   536篇
  1991年   508篇
  1990年   559篇
  1989年   514篇
  1988年   435篇
  1987年   395篇
  1986年   340篇
  1985年   368篇
  1984年   409篇
  1983年   398篇
  1982年   383篇
  1981年   356篇
  1980年   282篇
  1979年   312篇
  1978年   272篇
  1977年   215篇
  1975年   229篇
  1974年   204篇
  1972年   247篇
  1971年   208篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
231.
Three marine diatoms Lauderia annulata Cleve, Odontella sinensis (Greville) Grunow and Thalassiosira rotula Meunier were exposed to ultraviolet (UV) radiation of different wavebands under controlled laboratory conditions (0.035 vol% CO2, 18 °C). Several changes in the patterns of pigments in these organisms were seen depending on the waveband of UV radiation and species examined. UV-B and UV-B plus UV-A radiation led to a reduction in the overall pigment content of all three diatoms. The uptake of 15N-ammonium was less affected by 5-h UV-A (WG 320) but significantly reduced after UV-B and UV-B plus UV-A exposure. The pattern of free amino acid pools varied depending on the applied UV wavebands and the tested diatom. The main protein-bound amino acids of T. rotula decreased after 5-h UV irradiance except leucine. Contents of adenosine 5′-mono-, di-, and triphosphate (AMP, ADP and ATP) were affected differently by UV radiation; ATP values increased at the end of UV-B and UV-B plus UV-A exposure. These results have been discussed with reference to the impact of the different UV sources and the influence on the nitrogen metabolism in connection to pigments and supply with energy. Received: 13 May 1997 / Accepted: 11 October 1997  相似文献   
232.
233.
234.
Summary. We describe and extend a graphical approach to quantitative nutrition that focuses on the interplay between behavioural and physiological components of nutritional regulation. The site of integration is the nutrient transfer function, which is the function describing the time course of nutrient transfer between serially connected nutritional compartments (e.g., from the gut to the blood). The relationship between the shape of the nutrient transfer function and the temporal patterns of feeding determines the values of two key quantitative parameters of nutrition: the rate ('power') and the efficiency of nutrient acquisition. The approach can be extended to consider, in addition to the short-term behavioural and physiological decisions made by animals, some ecological determinants and longer-term, life history consequences of such decisions. Most importantly, this category of models can provide insights into the interplay among the various nutrients in an animal's diet. We illustrate this using hypothetical examples, and also present preliminary data for the power-efficiency relationships of protein and digestible carbohydrates in locusts. Finally, we consider existing evidence for the various means available to these and other insects for regulating such relationships. Received 24 September 1997; accepted 9 December 1997.  相似文献   
235.
The problem of estimation and prediction of a spatial-temporal stochastic process, observed at regular times and irregularly in space, is considered. A mixed formulation involving a non- parametric component, accounting for a deterministic trend and the effect of exogenous variables, and a parametric component representing the purely spatio-temporal random variation is proposed. Correspondingly, a two-step procedure, first addressing the estimation of the non- parametric component, and then the estimation of the parametric component is developed from the residual series obtained, with spatial-temporal prediction being performed in terms of suitable spatial interpolation of the temporal variation structure. The proposed model formula-tion, together with the estimation and prediction procedure, are applied using a Gaussian ARMA structure for temporal modelling to space-time forecasting from real data of air pollution concentration levels in the region surrounding a power station in northwest Spain.  相似文献   
236.
237.
The use of a quantitative population growth model to investigate the persistence of South African elephant populations is explored. The model provides quantitative assessments of population persistence and confidence intervals for estimated parameters based purely on population size estimates. The analysis supports the view that most of the larger populations in the region are secure. This view is further supported by a lack of density dependent effects in most of the recovering populations and the high population rates of increase observed. This predominantly positive prognosis is in contrast with that emerging from most of the rest of the African continent where the populations are under greater threat because of habitat restriction and direct human conflict. This preliminary assessment of elephant population persistence suggests that “viable” populations may lie between 400 and 6000 individuals. Although not inconsistent with information-greedy genetic and demographic models, the relationship between population growth versus genetic and demographic models should be further investigated. The implementation of a metapopulation management strategy towards these smaller populations is advocated. In addition, as all of the populations included in this analysis have been afforded some degree of protection since the 1920s, continued protection would be a prerequisite for their continued survival.  相似文献   
238.
Major and trace elements of selected pedons in the USA   总被引:6,自引:0,他引:6  
Few studies of soil geochemistry over large geographic areas exist, especially studies encompassing data from major pedogenic horizons that evaluate both native concentrations of elements and anthropogenically contaminated soils. In this study, pedons (n = 486) were analyzed for trace (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Zn) and major (Al, Ca, Fe, K, Mg, Na, P, Si, Ti, Zr) elements, as well as other soil properties. The objectives were to (i) determine the concentration range of selected elements in a variety of U.S. soils with and without known anthropogenic additions, (ii) illustrate the association of elemental source and content by assessing trace elemental content for several selected pedons, and (iii) evaluate relationships among and between elements and other soil properties. Trace element concentrations in the non-anthropogenic dataset (NAD) were in the order Mn > (Zn, Cr, Ni, Cu) > (Pb, Co) > (Cd, Hg), with greatest mean total concentrations for the Andisol order. Geometric means by horizon indicate that trace elements are concentrated in surface and/or B horizons over C horizons. Median values for trace elements are significantly higher in surface horizons of the anthropogenic dataset (AD) over the NAD. Total Al, Fe, cation exchange capacity (CEC), organic C, pH, and clay exhibit significant correlations (0.56, 0.74, 0.50, 0.31, 0.16, and 0.30, respectively) with total trace element concentrations of all horizons of the NAD. Manganese shows the best inter-element correlation (0.33) with these associated total concentrations. Total Fe has one of the strongest relationships, explaining 55 and 30% of the variation in total trace element concentrations for all horizons in the NAD and AD, respectively.  相似文献   
239.
ABSTRACT: The use of a fitted parameter watershed model to address water quantity and quality management issues requires that it be calibrated under a wide range of hydrologic conditions. However, rarely does model calibration result in a unique parameter set. Parameter nonuniqueness can lead to predictive nonuniqueness. The extent of model predictive uncertainty should be investigated if management decisions are to be based on model projections. Using models built for four neighboring watersheds in the Neuse River Basin of North Carolina, the application of the automated parameter optimization software PEST in conjunction with the Hydrologic Simulation Program Fortran (HSPF) is demonstrated. Parameter nonuniqueness is illustrated, and a method is presented for calculating many different sets of parameters, all of which acceptably calibrate a watershed model. A regularization methodology is discussed in which models for similar watersheds can be calibrated simultaneously. Using this method, parameter differences between watershed models can be minimized while maintaining fit between model outputs and field observations. In recognition of the fact that parameter nonuniqueness and predictive uncertainty are inherent to the modeling process, PEST's nonlinear predictive analysis functionality is then used to explore the extent of model predictive uncertainty.  相似文献   
240.
Excessive nitrogen (N) loading to N-sensitive waters such as the Neuse River estuary (North Carolina) has been shown to promote changes in microbial and algal community composition and function (harmful algal blooms), hypoxia and anoxia, and fish kills. Previous studies have estimated that wet atmospheric deposition of nitrogen (WAD-N), as deposition of dissolved inorganic nitrogen (DIN: NO3-, NH3/NH4+) and dissolved organic nitrogen, may contribute at least 15% of the total externally supplied or "new" N flux to the coastal waters of North Carolina. In a 3-yr study from June 1996 to June 1999, we calculated the weekly wet deposition of inorganic and organic N at eleven sites on a northwest-southeast transect in the watershed. The annual mean total (wet DIN + wet organics) WAD-N flux for the Neuse River watershed was calculated to be 956 mg N/m2/yr (15026 Mg N/yr). Seasonally, the spring (March-May) and summer (June-August) months contain the highest total weekly N deposition; this pattern appears to be driven by N concentration in precipitation. There is also spatial variability in WAD-N deposition; in general, the upper portion of the watershed receives the lowest annual deposition and the middle portion of the watershed receives the highest deposition. Based on a range of watershed N retention and in-stream riverine processing values, we estimate that this flux contributes approximately 24% of the total "new" N flux to the estuary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号