首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15941篇
  免费   210篇
  国内免费   142篇
安全科学   528篇
废物处理   663篇
环保管理   2616篇
综合类   2968篇
基础理论   3813篇
环境理论   13篇
污染及防治   3884篇
评价与监测   976篇
社会与环境   724篇
灾害及防治   108篇
  2023年   84篇
  2022年   144篇
  2021年   145篇
  2020年   113篇
  2019年   134篇
  2018年   265篇
  2017年   256篇
  2016年   395篇
  2015年   287篇
  2014年   394篇
  2013年   1201篇
  2012年   526篇
  2011年   714篇
  2010年   524篇
  2009年   621篇
  2008年   671篇
  2007年   736篇
  2006年   642篇
  2005年   536篇
  2004年   539篇
  2003年   508篇
  2002年   465篇
  2001年   510篇
  2000年   398篇
  1999年   270篇
  1998年   183篇
  1997年   179篇
  1996年   170篇
  1995年   224篇
  1994年   213篇
  1993年   185篇
  1992年   182篇
  1991年   186篇
  1990年   151篇
  1989年   159篇
  1988年   160篇
  1987年   149篇
  1986年   123篇
  1985年   137篇
  1984年   166篇
  1983年   167篇
  1982年   173篇
  1981年   137篇
  1980年   122篇
  1979年   117篇
  1978年   117篇
  1977年   97篇
  1976年   91篇
  1975年   97篇
  1974年   104篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
921.
The 7Be wet deposition has been intensively investigated in a semiarid region at San Luis Province, Argentina. From November 2006 to May 2008, the 7Be content in rainwater was determined in 58 individual rain events, randomly comprising more than 50% of all individual precipitations at the sampling period. 7Be activity concentration in rainwater ranged from 0.7 ± 0.3 Bq l−1 to 3.2 ± 0.7 Bq l−1, with a mean value of 1.7 Bq l−1 (sd = 0.53 Bq l−1). No relationship was found between 7Be content in rainwater and (a) rainfall amount, (b) precipitation intensity and (c) elapsed time between events. 7Be ground deposition was found to be well correlated with rainfall amount (R = 0.92). For the precipitation events considered, the 7Be depositional fluxes ranged from 1.1 to 120 Bq m−2, with a mean value of 32.7 Bq m−2 (sd = 29.9 Bq m−2). The annual depositional flux was estimated at 1140 ± 120 Bq m−2 y−1. Assuming the same monthly deposition pattern and that the 7Be content in soil decreases only through radioactive decay, the seasonal variation of 7Be areal activity density in soil was estimated. Results of this investigation may contribute to a valuable characterization of 7Be input in the explored semiarid ecosystem and its potential use as tracer of environmental processes.  相似文献   
922.
923.
Y.F. Rao  W. Chu   《Chemosphere》2009,74(11):1444-1449
The degradation of linuron, one of phenylurea herbicides, was investigated for its reaction kinetics by different treatment processes including ultraviolet irradiation (UV), ozonation (O3), and UV/O3. The decay rate of linuron by UV/O3 process was found to be around 3.5 times and 2.5 times faster than sole-UV and ozone-alone, respectively. Experimental results also indicate overall rate constants increased exponentially with pH above 9.0 while the increase of rate constants with pH below 9 is insignificant in O3 system. All dominant parameters involved in the three processes were determined in the assistant of proposed linear models in this study. The approach was found useful in predicting the process performances through the quantification of quantum yield (rate constant for the formation of free radical HOO from ozone decomposition at high pH), rate constant of linuron with ozone (kO3,LNR), rate constant of linuron with hydroxyl radical (kOH,LNR), and α (the ratio of the production rate of OH and the decay rate of ozone in UV/O3 system).  相似文献   
924.
The boundary between preferential flow and Richards-type flow is a priori set at a volumetric soil water content θ at which soil water diffusivity D (θ) = η (= 10− 6 m2 s− 1), where η is the kinematic viscosity. First we estimated with a hydrostatic approach from soil water retention curves the boundary, θK, between the structural pore domain, in which preferential flow occurs, and the matrix pore domain, in which Richards-type flow occurs. We then compared θK with θ that was derived from the respective soil hydrological property functions of same soil sample. Second, from in situ investigations we determined 96 values of θG as the terminal soil water contents that established themselves when the corresponding water-content waves of preferential flow have practically ceased. We compared the frequency distribution of θG with the one of θ that was calculated from the respective soil hydrological property functions of 32 soil samples that were determined with pressure plate apparatuses in the laboratory. There is support of the notion that θK θ≈ θ, thus indicating the potential of θ to explain more generally what constitutes preferential flow. However, the support is assessed as working hypothesis on which to base further research rather than a procedure to a clear-cut identification of preferential flow and associated flow paths.  相似文献   
925.
The potential for aerobic biodegradation of MTBE in a fractured chalk aquifer is assessed in microcosm experiments over 450 days, under in situ conditions for a groundwater temperature of 10 °C, MTBE concentration between 0.1 and 1.0 mg/L and dissolved O2 concentration between 2 and 10 mg/L. Following a lag period of up to 120 days, MTBE was biodegraded in uncontaminated aquifer microcosms at concentrations up to 1.2 mg/L, demonstrating that the aquifer has an intrinsic potential to biodegrade MTBE aerobically. The MTBE biodegradation rate increased three-fold from a mean of 6.6 ± 1.6 μg/L/day in uncontaminated aquifer microcosms for subsequent additions of MTBE, suggesting an increasing biodegradation capability, due to microbial cell growth and increased biomass after repeated exposure to MTBE. In contaminated aquifer microcosms which also contained TAME, MTBE biodegradation occurred after a shorter lag of 15 or 33 days and MTBE biodegradation rates were higher (max. 27.5 μg/L/day), probably resulting from an acclimated microbial population due to previous exposure to MTBE in situ. The initial MTBE concentration did not affect the lag period but the biodegradation rate increased with the initial MTBE concentration, indicating that there was no inhibition of MTBE biodegradation related to MTBE concentration up to 1.2 mg/L. No minimum substrate concentration for MTBE biodegradation was observed, indicating that in the presence of dissolved O2 (and absence of inhibitory factors) MTBE biodegradation would occur in the aquifer at MTBE concentrations (ca. 0.1 mg/L) found at the front of the ether oxygenate plume. MTBE biodegradation occurred with concomitant O2 consumption but no other electron acceptor utilisation, indicating biodegradation by aerobic processes only. However, O2 consumption was less than the stoichiometric requirement for complete MTBE mineralization, suggesting that only partial biodegradation of MTBE to intermediate organic metabolites occurred. The availability of dissolved O2 did not affect MTBE biodegradation significantly, with similar MTBE biodegradation behaviour and rates down to ca. 0.7 mg/L dissolved O2 concentration. The results indicate that aerobic MTBE biodegradation could be significant in the plume fringe, during mixing of the contaminant plume and uncontaminated groundwater and that, relative to the plume migration, aerobic biodegradation is important for MTBE attenuation. Moreover, should the groundwater dissolved O2 concentration fall to zero such that MTBE biodegradation was inhibited, an engineered approach to enhance in situ bioremediation could supply O2 at relatively low levels (e.g. 2–3 mg/L) to effectively stimulate MTBE biodegradation, which has significant practical advantages. The study shows that aerobic MTBE biodegradation can occur at environmentally significant rates in this aquifer, and that long-term microcosm experiments (100s days) may be necessary to correctly interpret contaminant biodegradation potential in aquifers to support site management decisions.  相似文献   
926.
Impact of initial and boundary conditions on preferential flow   总被引:4,自引:1,他引:3  
Preferential flow in soil is approached by a water-content wave, WCW, that proceeds downward from the ground surface. WCWs were obtained from sprinkler experiments with infiltration rates varying from 5 to 40 mm h− 1. TDR-probes and tensiometers measured volumetric water contents θ(z,t) at seven depths, and capillary heads, h(z,t) at six depths in a column of an undisturbed soil. The wave is characterized by the velocity of the wetting front, cW, the amplitude, wS, and the final water content, θ. We tested with uni-variate and bi-variate linear regressions the impacts of initial volumetric water contents, θini, and input rates, qS, on cW, wS and θ.The test showed that θini influenced θ and wS and qS effected cW. The expected proportionality of wS ≈ qs1/3 was weak and cW ≈ qs2/3 was strong.  相似文献   
927.
The production of N2 gas by denitrification may lead to the appearance of a gas phase below the water table prohibiting the conservative transport of tracer gases required for groundwater dating. We used a two-phase flow and transport model (STOMP) to study the reliability of 3H/3He, CFCs and SF6 as groundwater age tracers under agricultural land where denitrification causes degassing. We were able to reproduce the amount of degassing (R2 = 69%), as well as the 3H (R2 = 79%) and 3He (R2 = 76%) concentrations observed in a 3H/3He data set using simple 2D models. We found that the TDG correction of the 3H/3He age overestimated the control 3He/3He age by 2.1 years, due to the accumulation of 3He in the gas phase. The total uncertainty of degassed 3H/3He ages of 6 years (± 2 σ) is due to the correction of degassed 3He using the TDG method, but also due to the travel time in the unsaturated zone and the diffusion of bomb peak 3He. CFCs appear to be subject to significant degradation in anoxic groundwater and SF6 is highly susceptible to degassing. We conclude that 3H/3He is the most reliable method to date degassed groundwater and that two-phase flow models such as STOMP are useful tools to assist in the interpretation of degassed groundwater age tracer data.  相似文献   
928.
At a former wood preservation plant severely contaminated with coal tar oil, in situ bulk attenuation and biodegradation rate constants for several monoaromatic (BTEX) and polyaromatic hydrocarbons (PAH) were determined using (1) classical first order decay models, (2) Michaelis–Menten degradation kinetics (MM), and (3) stable carbon isotopes, for o-xylene and naphthalene. The first order bulk attenuation rate constant for o-xylene was calculated to be 0.0025 d− 1 and a novel stable isotope-based first order model, which also accounted for the respective redox conditions, resulted in a slightly smaller biodegradation rate constant of 0.0019 d− 1. Based on MM-kinetics, the o-xylene concentration decreased with a maximum rate of kmax = 0.1 µg/L/d. The bulk attenuation rate constant of naphthalene retrieved from the classical first order decay model was 0.0038 d− 1. The stable isotope-based biodegradation rate constant of 0.0027 d− 1 was smaller in the reduced zone, while residual naphthalene in the oxic part of the plume further downgradient was degraded at a higher rate of 0.0038 d− 1. With MM-kinetics a maximum degradation rate of kmax = 12 µg/L/d was determined. Although best fits were obtained by MM-kinetics, we consider the carbon stable isotope-based approach more appropriate as it is specific for biodegradation (not overall attenuation) and at the same time accounts for the dominant electron-accepting process. For o-xylene a field based isotope enrichment factor εfield of − 1.4 could be determined using the Rayleigh model, which closely matched values from laboratory studies of o-xylene degradation under sulfate-reducing conditions.  相似文献   
929.
Knowledge of the factors that influence the diffusion of contaminants, such as the diffusivity and the connected porosity, is crucial to modeling the long-term fate and transport of contaminants in subsurface systems with small or negligible advective flow, such as in fractured crystalline rock. Fractured rock is naturally heterogeneous, and hence, understanding the diffusivity of a molecule through this material (or the formation factor of the medium) becomes a complex problem, with critical concerns about the scale of laboratory measurements and about the spatial variability of these measurements relative to the scale needed for fate and transport modeling. This study employed both electrical and tracer-based laboratory methods to investigate the effects of scale and pore system connectivity on the diffusivity for volcanic matrix rock derived from the study site, a former underground nuclear test site at Amchitka Island, Alaska. The results of these investigations indicate a relatively well-connected pore system with scale effects generally limited to approximately 6 cm lengths and well-correlated to observed heterogeneous features. An important conclusion resulting from this study, however, is that there is a potential for the estimated diffusivity to be misrepresented by an order of magnitude if multiple samples or longer sample lengths are not used. Given the relatively large number of measurements resulting from these investigations, an analysis of the probability density function (PDF) of the diffusivity was possible. The PDF of the diffusivity was shown to generally follow a normal distribution for individual geologic layers. However, when all of the geologic layers are considered together, the distribution of the subsurface as a whole was shown to follow a lognormal distribution due to the order of magnitude differences amongst the layers. An understanding of these distributions is essential for future stochastic modeling efforts.  相似文献   
930.
An anaerobic plume of process-affected groundwater was characterized in a shallow sand aquifer adjacent to an oil sands tailings impoundment. Based on biological oxygen demand measurements, the reductive capacity of the plume is considered minimal. Major dissolved components associated with the plume include HCO3, Na, Cl, SO4, and naphthenic acids (NAs). Quantitative and qualitative NA analyses were performed on groundwater samples to investigate NA fate and transport in the subsurface. Despite subsurface residence times exceeding 20 years, significant attenuation of NAs by biodegradation was not observed based on screening techniques developed at the time of the investigation. Relative to conservative tracers (i.e., Cl), overall NA attenuation in the subsurface is limited, which is consistent with batch sorption and microcosm studies performed by other authors. Insignificant biological oxygen demand and low concentrations of dissolved As (< 10 µg L− 1) in the plume suggest that the potential for secondary trace metal release, specifically As, via reductive dissolution reactions driven by ingress of process-affected water is minimal. It is also possible that readily leachable As is not present in significant quantities within the sediments of the study area. Thus, for similar plumes of process-affected groundwater in shallow sand aquifers which may occur as oil sands mining expands, a reasonable expectation is for NA persistence, but minimal trace metal mobilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号