首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18948篇
  免费   227篇
  国内免费   209篇
安全科学   602篇
废物处理   749篇
环保管理   2738篇
综合类   3745篇
基础理论   4579篇
环境理论   13篇
污染及防治   4505篇
评价与监测   1405篇
社会与环境   925篇
灾害及防治   123篇
  2023年   109篇
  2022年   174篇
  2021年   156篇
  2020年   129篇
  2019年   167篇
  2018年   309篇
  2017年   325篇
  2016年   470篇
  2015年   342篇
  2014年   552篇
  2013年   1416篇
  2012年   660篇
  2011年   862篇
  2010年   658篇
  2009年   742篇
  2008年   808篇
  2007年   818篇
  2006年   745篇
  2005年   671篇
  2004年   623篇
  2003年   594篇
  2002年   561篇
  2001年   675篇
  2000年   456篇
  1999年   324篇
  1998年   221篇
  1997年   222篇
  1996年   234篇
  1995年   266篇
  1994年   249篇
  1993年   193篇
  1992年   217篇
  1991年   210篇
  1990年   201篇
  1989年   175篇
  1988年   180篇
  1987年   133篇
  1986年   166篇
  1985年   163篇
  1984年   165篇
  1983年   156篇
  1982年   171篇
  1981年   163篇
  1980年   118篇
  1979年   113篇
  1978年   129篇
  1977年   97篇
  1976年   105篇
  1974年   108篇
  1967年   100篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
901.
The ambient air quality monitoring data of 2006 and 2007 from a recently established Pearl River Delta (PRD) regional air quality monitoring network are analyzed to investigate the characteristics of ground-level ozone in the region. Four sites covering urban, suburban, rural and coastal areas are selected as representatives for detailed analysis in this paper. The results show that there are distinct seasonal and diurnal cycles in ground-level ozone across the PRD region. Low ozone concentrations are generally observed in summer, while high O3 levels are typically found in autumn. The O3 diurnal variations in the urban areas are larger than those at the rural sites. The O3 concentrations showed no statistically significant difference between weekend and weekdays in contrast to the findings in many other urban areas in the world. The average ozone concentrations are lower in urban areas compared to the sites outside urban centers. Back trajectories are used to show the major air-mass transport patterns and to examine the changes in ozone from the respective upwind sites to a site in the center of the PRD (Wanqingsha). The results show higher average ozone concentrations at the upwind sites in the continental and coastal air masses, but higher 1 h-max O3 concentrations (by 8–16 ppbv) at the center PRD site under each of air-mass category, suggesting that the ozone pollution in the PRD region exhibits both regional and super-regional characteristics.  相似文献   
902.
Land-use regression models have increasingly been applied for air pollution mapping at typically the city level. Though models generally predict spatial variability well, the structure of models differs widely between studies. The observed differences in the models may be due to artefacts of data and methodology or underlying differences in source or dispersion characteristics. If the former, more standardised methods using common data sets could be beneficial. We compared land-use regression models for NO2 and PM10, developed with a consistent protocol in Great Britain (GB) and the Netherlands (NL).Models were constructed on the basis of 2001 annual mean concentrations from the national air quality networks. Predictor variables used for modelling related to traffic, population, land use and topography. Four sets of models were developed for each country. First, predictor variables derived from data sets common to both countries were used in a pooled analysis, including an indicator for country and interaction terms between country and the identified predictor variables. Second, the common data sets were used to develop individual baseline models for each country. Third, the country-specific baseline models were applied after calibration in the other country to explore transferability. The fourth model was developed using the best possible predictor variables for each country.A common model for GB and NL explained NO2 concentrations well (adjusted R2 0.64), with no significant differences in intercept and slopes between the two countries. The country-specific model developed on common variables for NL but not GB improved the prediction.The performance of models based upon common data was only slightly worse than models optimised with local data. Models transferred to the other country performed substantially worse than the country-specific models. In conclusion, care is needed both in transferring models across different study areas, and in developing large inter-regional LUR models.  相似文献   
903.
Little is known about the level and content of exposure to fine particles (PM2.5) among persons who attend fireworks displays and those who live nearby. An evaluation of the levels of PM2.5 and their elemental content was carried out during the nine launches of the 2007 Montréal International Fireworks Competition. For each event, a prediction of the location of the firework plume was obtained from the Canadian Meteorological Centre (CMC) of the Meteorological Service of Canada. PM2.5 was measured continuously with a photometer (Sidepak?, TSI) within the predicted plume location (“predicted sites”), and integrated samples were collected using portable personal samplers. An additional sampler was located on a nearby roof (“fixed site”). The elemental composition of the collected PM2.5 samples from the “predicted sites” was determined using both a non-destructive energy dispersive ED-XRF method and an ICP-MS method with a near-total microwave-assisted acid digestion. The elemental composition of the “fixed site” samples was determined by the ICP-MS with the near-total digestion method. The highest PM2.5 levels reached nearly 10 000 μg m?3, roughly 1000 times background levels. Elements such as K, Cl, Al, Mg and Ti were markedly higher in plume-exposed filters. This study shows that 1) persons in the plume and in close proximity to the launch site may be exposed to extremely high levels of PM2.5 for the duration of the display and, 2) that the plume contains specific elements for which little is known of their acute cardio-respiratory toxicity.  相似文献   
904.
Semi-continuous and 24-h averaged measurements of fine carbonaceous aerosols were made concurrently at three sites within each of two U.S. Midwestern Cities; Detroit, Michigan and Cleveland, Ohio; during two, one-month intensive campaigns conducted in July of 2007 and January & February of 2008. A comparison of 24-h measurements revealed substantial intra-urban variability in carbonaceous aerosols consistent with the influence of local sources, and excesses in both PM2.5 organic carbon (OC) and elemental carbon (EC) were identified at individual sites within each city. High time-resolved black carbon (BC) measurements indicated that elemental carbon concentrations were higher at sites adjacent to freeways and busy surface streets, and temporal patterns suggested that excess EC at sites adjacent to freeways was dominated by mobile source emissions while excesses in EC away from traffic corridors was dominated by point/area source emissions. The site-to-site variability in OC concentrations was approximately 7% within the neighborhood scale (0.5–4 km) and between 4 and 27% at the urban scale (4–100 km). In contrast, measurements of organic source tracers, in conjunction with a Chemical Mass Balance (CMB) source-apportionment model, indicated that the spatial variation in the contribution of both mobile and stationary sources to PM2.5 OC often exceeded the variation in OC mass concentration by a factor of 3 or more. Markers for mobile sources, biomass smoke, natural gas, and coal combustion differed by as much as 60% within the neighborhood scale and by greater than 200% within the urban scale. The observations made during this study suggest that the urban excess of carbonaceous aerosols is much more complex than has been previously reported and that a more rigorous, source-oriented approach should be taken in order to assess the risk associated with exposure to carbonaceous aerosols within the industrialized environments of the Midwestern United States.  相似文献   
905.
This paper describes a study of local biogenic volatile organic compounds (BVOC) emissions from the Hong Kong Special Administrative Region (HKSAR). An improved land cover and emission factor database was developed to estimate Hong Kong emissions using MEGAN, a BVOC emission model developed by Guenther et al. (2006). Field surveys of plant species composition and laboratory measurements of emission factors were combined with other data to improve existing land cover and emission factor data. The BVOC emissions from Hong Kong were calculated for 12 consecutive years from 1995 to 2006. For the year 2006, the total annual BVOC emissions were determined to be 12,400 metric tons or 9.82 × 109 g C (BVOC carbon). Isoprene emission accounts for 72%, monoterpene emissions account for 8%, and other VOCs emissions account for the remaining 20%. As expected, seasonal variation results in a higher emission in the summer and a lower emission in the winter, with emission predominantly in day time. A high emission of isoprene occurs for regions, such as Lowest Forest-NT North, dominated by broadleaf trees. The spatial variation of total BVOC is similar to the isoprene spatial variation due to its high contribution. The year to year variability in emissions due to weather was small over the twelve-year period (?1.4%, 2006 to 1995 trendline), but an increasing trend in the annual variation due to an increase in forest land cover can be observed (+7%, 2006 to 1995 trendline). The results of this study demonstrate the importance of accurate land cover inputs for biogenic emission models and indicate that land cover change should be considered for these models.  相似文献   
906.
Toluene is ubiquitous in urban atmospheres and is a precursor to tropospheric ozone and aerosol (smog). An important characteristic of toluene chemistry is the tendency of some degradation products (e.g., cresols and methyl-catechols) to form organic nitro and nitrate compounds that sequester NOx (NO and NO2) from active participation in smog formation. Explaining the NOx sinks in toluene degradation has made mechanism development more difficult for toluene than for many other organic compounds. Another challenge for toluene is explaining sources of radicals early in the degradation process. This paper describes the development of a new condensed toluene mechanism consisting of 26 reactions, and evaluates the performance of CB05 with this new toluene scheme (Toluene Update, TU) against 38 chamber experiments at 7 different environmental chambers, and provides recommendations for future developments. CB05 with the current toluene mechanism (CB05-Base) under-predicted the maximum O3 and O3 production rate for many of these toluene–NOx chamber experiments, especially under low-NOx conditions ([NOx]t=0 < 100 ppb). CB05 with the new toluene mechanism (CB05-TU) includes changes to the yields and reactions of cresols and ring-opening products, and showed better performance than CB05-Base in predicting the maximum O3, O3 formation rate, NOx removal rate and cresol concentration. Additional environmental chamber simulations with xylene–NOx experiments showed that the TU mechanism updates tended to improve mechanism performance for xylene.  相似文献   
907.
908.
The emission-exposure and exposure-response (toxicity) relationships are different for different emission source categories of anthropogenic primary fine particulate matter (PM2.5). These variations have a potentially crucial importance in the integrated assessment, when determining cost-effective abatement strategies. We studied the importance of these variations by conducting a sensitivity analysis for an integrated assessment model. The model was developed to estimate the adverse health effects to the Finnish population attributable to primary PM2.5 emissions from the whole of Europe. The primary PM2.5 emissions in the whole of Europe and in more detail in Finland were evaluated using the inventory of the European Monitoring and Evaluation Programme (EMEP) and the Finnish Regional Emission Scenario model (FRES), respectively. The emission-exposure relationships for different primary PM2.5 emission source categories in Finland have been previously evaluated and these values incorporated as intake fractions into the integrated assessment model. The primary PM2.5 exposure-response functions and toxicity differences for the pollution originating from different source categories were estimated in an expert elicitation study performed by six European experts on air pollution health effects. The primary PM2.5 emissions from Finnish and other European sources were estimated for the population of Finland in 2000 to be responsible for 209 (mean, 95% confidence interval 6–739) and 357 (mean, 95% CI 8–1482) premature deaths, respectively. The inclusion of emission-exposure and toxicity variation into the model increased the predicted relative importance of traffic related primary PM2.5 emissions and correspondingly, decreased the predicted relative importance of other emission source categories. We conclude that the variations of emission-exposure relationship and toxicity between various source categories had significant impacts for the assessment on premature deaths caused by primary PM2.5.  相似文献   
909.
Reactive oxygen species (ROS) and related free radicals are considered to be key factors underpinning the various adverse health effects associated with exposure to ambient particulate matter. Therefore, measurement of ROS is a crucial factor for assessing the potential toxicity of particles. In this work, a novel profluorescent nitroxide, BPEAnit, was investigated as a probe for detecting particle-derived ROS. BPEAnit has a very low fluorescence emission due to inherent quenching by the nitroxide group, but upon radical trapping or redox activity, a strong fluorescence is observed. BPEAnit was tested for detection of ROS present in mainstream and sidestream cigarette smoke. In the case of mainstream cigarette smoke, there was a linear increase in fluorescence intensity with an increasing number of cigarette puffs, equivalent to an average of 101 nmol ROS per cigarette based on the number of moles of the probe reacted. Sidestream cigarette smoke sampled from an environmental chamber exposed BPEAnit to much lower concentrations of particles, but still resulted in a clearly detectible increase in fluorescence intensity with sampling time. It was calculated that the amount of ROS was equivalent to 50 ± 2 nmol per mg of particulate matter; however, this value decreased with ageing of the particles in the chamber. Overall, BPEAnit was shown to provide a sensitive response related to the oxidative capacity of the particulate matter. These findings present a good basis for employing the new BPEAnit probe for the investigation of particle-related ROS generated from cigarette smoke as well as from other combustion sources.  相似文献   
910.
In agricultural areas, the contamination of feedstuffs with molds and mycotoxins presents major environmental and health concerns. During cattle feeding, fungi and mycotoxins were monitored in corn silage, oilseed cakes and bioaerosols collected in Normandy. Most of the corn silages were found to be contaminated by deoxynivalenol (mean concentration: 1883 μg kg?1) while a few of oilseed cakes were contaminated by alternariol, fumonisin B1 or gliotoxin. In ambient bioaerosols, the values for fungi per cubic meter of air varied from 4.3 × 102 to 6.2 × 105 cfu m?3. Seasonal variations were observed with some species like Aspergillus fumigatus which significantly decreased between the 2 seasons (P = 0.0186) while the Penicillium roqueforti group significantly increased during the second season (P = 0.0156). In the personal bioaerosols, the values for fungi per cubic meter of air varied from 3.3 103 to 1.7 106 cfu m?3 and the number of A. fumigatus spores significantly decreased between the 2 seasons (P = 0.0488). Gliotoxin, an immunosuppressive mycotoxin, was quantified in 3 personal filters at 3.73 μg m?3, 1.09 μg m?3 and 2.97 μg m?3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号