首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17441篇
  免费   261篇
  国内免费   168篇
安全科学   608篇
废物处理   489篇
环保管理   3073篇
综合类   3768篇
基础理论   4220篇
环境理论   14篇
污染及防治   4190篇
评价与监测   860篇
社会与环境   530篇
灾害及防治   118篇
  2021年   120篇
  2019年   133篇
  2018年   234篇
  2017年   254篇
  2016年   348篇
  2015年   267篇
  2014年   344篇
  2013年   1313篇
  2012年   502篇
  2011年   704篇
  2010年   493篇
  2009年   613篇
  2008年   672篇
  2007年   706篇
  2006年   632篇
  2005年   498篇
  2004年   509篇
  2003年   512篇
  2002年   446篇
  2001年   536篇
  2000年   403篇
  1999年   280篇
  1998年   222篇
  1997年   196篇
  1996年   236篇
  1995年   248篇
  1994年   266篇
  1993年   236篇
  1992年   234篇
  1991年   217篇
  1990年   239篇
  1989年   225篇
  1988年   190篇
  1987年   198篇
  1986年   185篇
  1985年   200篇
  1984年   187篇
  1983年   195篇
  1982年   207篇
  1981年   201篇
  1980年   173篇
  1979年   160篇
  1978年   168篇
  1977年   140篇
  1976年   148篇
  1975年   120篇
  1974年   146篇
  1973年   128篇
  1972年   133篇
  1967年   116篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
621.
In an earlier paper, major commercially available incinerator technologies designed to treat dilute waste gas streams containing volatile organic compounds (VOCs) were described in a qualitative comparison. In addition, a simplified procedure was outlined through which important sizing parameters could be calculated given certain information about the waste gas. This paper describes the use of these parameters in developing a study (±30percent) cost estimate for the total capital investment and the total annual costs incurred in treating a waste stream of volatile organic compounds (VOCs). An illustrative problem used in the former paper is completed here in order to contrast some of the economic differences between thermal and catalytic incinerator systems.  相似文献   
622.
Equations are derived from the Gaussian plume mode! and prescribe the critical downwind distance, wind speed, and plume rise values that result in maximum ground-level concentrations (MGLC) under downwash conditions. The derivations apply to bent-over plumes and encompass the Schulman-Scire and Huber-Snyder building downwash treatments.  相似文献   
623.
Pilot-scale tests were conducted to develop a combined nitrogen oxide (NOx) reduction technology using both selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR). A commercially available vanadium- and titanium-based composite honeycomb catalyst and enhanced urea (NH2CONH2) were used with a natural-gas-fired furnace at a NOx concentration of 110 ppm. Changes in SNCR chemical injection temperature and stoichiometry led to varying levels of post-furnace ammonia (NH3), which acts as the reductant feed to the downstream SCR catalyst. The urea-based chemical could routinely achieve SNCR plus SCR total NOx reductions of 85 percent with less than 3 ppm NH3 slip at reductant/NOx stoichiometries ranging from about 1.5 to 2.5 and SCR space velocities of 18,000 to 32,000 h?1. This pilot-scale research has shown that SNCR and SCR can be integrated to achieve high NOx removal. SNCR provides high temperature reduction of NOx followed by further removal of NOx and minimization of NH3 slip by a significantly downsized (high-space velocity) SCR.  相似文献   
624.
Abstract

Neural networks have shown tremendous promise in modeling complex problems. This work describes the development and validation of a neural network for the purpose of estimating point source emission rates of hazardous gases. This neural network approach has been developed and tested using experimental data obtained for two specific air pollutants of concern in West Texas, hydrogen sulfide and ammonia. The prediction of the network is within 20% of the measured emission rates for these two gases at distances of less than 50 m. The emission rate estimations for ground level releases were derived as a function of seven variables: downwind distance, crosswind distance, wind speed, downwind concentration, atmospheric stability, ambient temperature, and relative humidity. A backpropagation algorithm was used to develop the neural network and is also discussed here. The experimental data were collected at the Wind Engineering Research Field Site located at Texas Tech University in Lubbock, Texas. Based on the results of this study, the use of neural networks provides an attractive and highly effective tool to model atmospheric dispersion, in which a large number of variables interact in a nonlinear manner.  相似文献   
625.
Abstract

The direct Karl Fischer (KF) titration method has known interferences for measuring water content. In addition, in analyzing some paints, KF can fail to produce an accurate analysis. The California Air Resources Board (GARB) staff has developed a KF procedure that can be used to determine the water content of consumer products. The procedure uses an oven accessory to the titration system, and is based on a distillation method developed by the California Polytechnical University at San Luis Obispo (Cal Poly). Samples are diluted in l-methoxy-2-propanol (MPA), and an aliquot is injected into an enclosed oven system, where the MPA/water azeotrope is swept directly into the KF titration vessel. The technique is accurate and precise and, thus far, proves to be a fast and reliable method for analysis.  相似文献   
626.
ABSTRACT

Time-series of daily mortality data from May 1992 to September 1995 for various portions of the seven-county Philadelphia, PA, metropolitan area were analyzed in relation to weather and a variety of ambient air quality parameters. The air quality data included measurements of size-classified PM, SO4 2-, and H+ that had been collected by the Harvard School of Public Health, as well as routine air pollution monitoring data. Because the various pollutants of interest were measured at different locations within the metropolitan area, it was necessary to test for spatial sensitivity by comparing results for different combinations of locations. Estimates are presented for single pollutants and for multiple-pollutant models, including gaseous pollutants and mutually exclusive components of PM (PM2.5 and coarse particles, SO4 2- and non-SO4 2- portions of total suspended particulate [TSP] and PM10), measured on the day of death and the previous day.

We concluded that associations between air quality and mortality were not limited to data collected in the same part of the metropolitan area; that is, mortality for one part may be associated with air quality data from another, not necessarily neighboring, part. Significant associations were found for a wide variety of gaseous and particulate pollutants, especially for peak O3. Using joint regressions on peak O3 with various other pollutants, we found that the combined responses were insensitive to the specific other pollutant selected. We saw no systematic differences according to particle size or chemistry. In general, the associations between daily mortality and air pollution depended on the pollutant or the PM metric, the type of collection filter used, and the location of sampling. Although peak O3 seemed to exhibit the most consistent mortality responses, this finding should be confirmed by analyzing separate seasons and other time periods.  相似文献   
627.
ABSTRACT

Methane exchange with the atmosphere was measured during three seasons at the Rooney Road landfill in Jefferson County, CO. Substantial spatial and temporal variability in exchange rates were observed. Mean fluxes to the atmosphere were 534, 1290, and 538 mg CH4/m2/day, respectively, in the fall of 1994, winter of 1994–1995, and summer of 1995. Median fluxes were 12.42, 8.62, and 5.65 mg CH4/m2/day, respectively, during those seasons. Forty-three of 177 measurements had small negative fluxes, suggesting methanotrophic activity in the landfill cover soils. Despite probable methanotrophic activity in cover soils, landfills without gas collection systems may emit substantial CH4 to the atmosphere, with large spatial and seasonal variability.  相似文献   
628.
ABSTRACT

In order to characterize typical indoor exposures to chemicals of interest for research on breast cancer and other hormonally mediated health outcomes, methods were developed to analyze air and dust for target compounds that have been identified as animal mammary carcinogens or hormonally active agents and that are used in commercial or consumer products or building materials. These methods were applied to a small number of residential and commercial environments to begin to characterize the extent of exposure to these classes of compounds. Phenolic compounds, including nonylphenol, octylphenol, bisphenol A, and the methoxychlor metabolite 2,2-bis (p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), were extracted, derivatized, and analyzed by gas chromatography/mass spectrometry (GC/MS)–selective ion monitoring (SIM). Selected phthalates, pesticides, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) were extracted and analyzed by GC/MS-SIM. Residential and workplace samples showed detectable levels of twelve pesticides in dust and seven in air samples. Phthalates were abundant in dust (0.3524 μg/g) and air (0.005-2.8 μg/m3). Nonylphenol and its mono- and di-ethoxylates were prevalent in dust (0.82-14 μg/g) along with estrogenic phenols such as bisphenol A and o-phenyl phenol. In this 7-sample pilot study, 33 of 86 target compounds were detected in dust, and 24 of 57 target compounds were detected in air. In a single sample from one home, 27 of the target compounds were detected in dust and 15 in air, providing an indication of chemical mixtures to which humans are typically exposed.  相似文献   
629.
ABSTRACT

The application of artificial intelligence techniques for performance optimization of the fuel lean gas reburn (FLGR) system is investigated. A multilayer, feedforward artificial neural network is applied to model static nonlinear relationships between the distribution of injected natural gas into the upper region of the furnace of a coal-fired boiler and the corresponding oxides of nitrogen (NOx) emissions exiting the furnace. Based on this model, optimal distributions of injected gas are determined such that the largest NOx reduction is achieved for each value of total injected gas. This optimization is accomplished through the development of a new optimization method based on neural networks. This new optimal control algorithm, which can be used as an alternative generic tool for solving multidimensional nonlinear constrained optimization problems, is described and its results are successfully validated against an off-the-shelf tool for solving mathematical programming problems. Encouraging results obtained using plant data from one of Commonwealth Edison's coal-fired electric power plants demonstrate the feasibility of the overall approach.

Preliminary results show that the use of this intelligent controller will also enable the determination of the most cost-effective operating conditions of the FLGR system by considering, along with the optimal distribution of the injected gas, the cost differential between natural gas and coal and the open-market price of NOx emission credits. Further study, however, is necessary, including the construction of a more comprehensive database, needed to develop high-fidelity process models and to add carbon monoxide (CO) emissions to the model of the gas reburn system.  相似文献   
630.
ABSTRACT

The decoupling of fossil-fueled electricity production from atmospheric CO2 emissions via CO2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a “bottom-up” engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号