首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5168篇
  免费   145篇
  国内免费   61篇
安全科学   286篇
废物处理   175篇
环保管理   1323篇
综合类   563篇
基础理论   1401篇
环境理论   8篇
污染及防治   1045篇
评价与监测   333篇
社会与环境   178篇
灾害及防治   62篇
  2023年   59篇
  2022年   58篇
  2021年   58篇
  2020年   63篇
  2019年   75篇
  2018年   123篇
  2017年   139篇
  2016年   185篇
  2015年   128篇
  2014年   165篇
  2013年   434篇
  2012年   239篇
  2011年   316篇
  2010年   210篇
  2009年   243篇
  2008年   274篇
  2007年   270篇
  2006年   236篇
  2005年   202篇
  2004年   188篇
  2003年   155篇
  2002年   145篇
  2001年   95篇
  2000年   103篇
  1999年   78篇
  1998年   84篇
  1997年   64篇
  1996年   66篇
  1995年   82篇
  1994年   75篇
  1993年   66篇
  1992年   58篇
  1991年   42篇
  1990年   37篇
  1989年   41篇
  1988年   31篇
  1987年   41篇
  1986年   43篇
  1985年   43篇
  1984年   47篇
  1983年   46篇
  1982年   53篇
  1981年   43篇
  1980年   32篇
  1979年   20篇
  1978年   29篇
  1977年   20篇
  1976年   13篇
  1975年   12篇
  1971年   9篇
排序方式: 共有5374条查询结果,搜索用时 31 毫秒
151.
Epifaunal communities associated with macroalgae were exposed to storm water pulses using a custom made irrigation system. Treatments included Millipore freshwater, freshwater spiked with trace metals and seawater controls to allow for the relative importance of freshwater inundation, trace metals and increased flow to be determined. Experimental pulses created conditions similar to those that occur following real storm water events. Brief storm water pulses reduced the abundance of amphipods and gastropods. Freshwater was the causative agent as there were no additional effects of trace metals on the assemblages. Laboratory assays indicated that neither direct nor latent mortality was likely following experimental pulses and that epifauna readily avoid storm water. Indirect effects upon epifauna through salinity-induced changes to algal habitats were not found in field recolonisation experiments. Results demonstrate the importance of examining the effects of pulsed contaminants under realistic exposure conditions and the need to consider ecologically relevant endpoints.  相似文献   
152.
An in situ arsenic removal method applicable to highly contaminated water is presented. The method is based in the use of steel wool, lemon juice and solar radiation. The method was evaluated using water from the Camarones River, Atacama Desert in northern Chile, in which the arsenic concentration ranges between 1000 and 1300 μg L−1. Response surface method analysis was used to optimize the amount of zero-valent iron (steel wool) and the citrate concentration (lemon juice) to be used. The optimal conditions when using solar radiation to remove arsenic from natural water from the Camarones river are: 1.3 g L−1 of steel wool and one drop (ca. 0.04 mL) of lemon juice. Under these conditions, removal percentages are higher than 99.5% and the final arsenic concentration is below 10 μg L−1. This highly effective arsenic removal method is easy to use and inexpensive to implement.  相似文献   
153.
A kinetic model for a cycling adsorbent/photocatalyst combination for formaldehyde removal in indoor air (Chin et al. J. Catalysis 2006, 237, 29-37) was previously developed in our lab, demonstrating agreement with lab-scale batch operation data of other researchers (Shiraishi et al. Chem. Engineer. Sci. 2003, 58, 929-934). Model parameters evaluated included adsorption equilibrium and rate constants for the adsorbent (activated carbon) honeycomb rotor, and catalytic rate constant for pseudo-first-order formaldehyde destruction in the titanium dioxide photoreactor. This paper explores design consequences for this novel system. In particular, the batch parameter values are used to model both adsorbent and photocatalyst behavior for continuous operation in typical residential home challenges. Design variables, including realistic make-up air fraction, adsorbent honeycomb rotation speed, and formaldehyde source emission rate, are considered to evaluate the ability of the system to achieve World Health Organization pollutant guidelines. In all circumstances, the size of the required rotating adsorbent bed and photoreactor for single-stage operation and the resultant formaldehyde concentration in the home are calculated. The ability of how well such a system might be accommodated within the typical dimensions of commercial ventilation ducts is also considered.  相似文献   
154.
Air quality field data, collected as part of the fine particulate matter Supersites Program and other field measurements programs, have been used to assess the degree of intraurban variability for various physical and chemical properties of ambient fine particulate matter. Spatial patterns vary from nearly homogeneous to quite heterogeneous, depending on the city, parameter of interest, and the approach or method used to define spatial variability. Secondary formation, which is often regional in nature, drives fine particulate matter mass and the relevant chemical components toward high intraurban spatial homogeneity. Those particulate matter components that are dominated by primary emissions within the urban area, such as black carbon and several trace elements, tend to exhibit greater spatial heterogeneity. A variety of study designs and data analysis approaches have been used to characterize intraurban variability. High temporal correlation does not imply spatial homogeneity. For example, there can be high temporal correlation but with spatial heterogeneity manifested as smooth spatial gradients, often emanating from areas of high emissions such as the urban core or industrial zones.  相似文献   
155.
The release of mercury to the environment is of particular concern because of its volatility, persistence, and tendency to bioaccumulate. The recovery of mercury from end-box exhaust at chlor-alkali facilities is important to prevent release into the environment and reduce emissions as required by NESHAP (National Emission Standards for Hazardous Air Pollutants). A pilot-scale photocatalytic reactor packed with silica-titania composite (STC) pellets was tested at a chloralkali facility over a 3-month period. This pilot reactor treated up to 10 ft3/min (ACFM) of end-box exhaust and achieved 95% removal. The pilot reactor was able to maintain excellent removal efficiency even with large fluctuations in influent mercury concentration (400-1600 microg/ft3). The STC pellets were regenerated ex situ by regeneration with hydrochloric acid and performed similarly to virgin STC pellets when returned to service. On the basis of these promising results, two full-scale reactors with in situ regeneration capabilities were installed and operated. After optimization, these reactors performed similarly to the pilot reactor. A cost analysis was performed comparing the treatment costs (i.e., cost per pound of mercury removed) for sulfur-impregnated activated carbon and the STC system. The STC proved to be both technologically and economically feasible for this installation.  相似文献   
156.
The suddenness and scale of the 26 December 2004 tsunami and the challenges posed to affected communities highlighted the benefits of their members having a capacity to confront and adapt to the consequences of such a disaster. Research into adaptive capacity or resilience has been conducted almost exclusively with Western populations. This paper describes an exploratory study of the potential of a measure of collective efficacy developed for Western populations to predict the capacity of members of a collective society, Thai citizens affected by the 2004 tsunami, to confront effectively the recovery demands associated with this disaster. Following a demonstration that this measure could predict adaptive capacity, the role of religious affiliation, ethnicity and place of residence in sustaining collective efficacy is discussed. The implications of the findings for future research on, and intervention to develop, adaptive capacity among Thai citizens in particular and collectivist societies in general are discussed.  相似文献   
157.
The purpose of this pilot study was to determine whether perfluorooctanesulfonate (PFOS,C(8)F(17)SO(3)(-)) and perfluorooctanoate (PFOA,C(7)F(15)CO(2)(-)) concentrations in American Red Cross blood donors from Minneapolis-St. Paul, Minnesota have declined after the 2000-2002 phase-out of perfluorooctanesulfonyl-fluoride (POSF, C(8)F(17)SO(2)F)-based materials by the primary global manufacturer, 3M Company. Forty donor plasma samples, categorized by age and sex, were collected in 2005, and PFOS and PFOA concentrations were compared to 100 (non-paired) donor serum samples collected in 2000 from the same general population that were analyzed at the time using ion-pair extraction methods with tetrahydroperfluorooctanesulfonate as an internal standard. Eleven of the 100 samples originally collected were reanalyzed with present study methods that involved (13)C- labeled PFOA spiked into the donor samples, original samples, control human plasma, and the calibration curve prior to extraction, and was used as a surrogate to monitor extraction efficiency. Quantification was performed by high performance liquid chromatography tandem mass spectrometry methods. Among the 100 serum samples analyzed for PFOS, the geometric mean was 33.1 ng ml(-1) (95% CI 29.8-36.7) in 2000 compared to 15.1 ng ml(-1) (95% CI 13.3-17.1) in 2005 (p<0.0001) for the 40 donor plasma samples. The geometric mean concentration for PFOA was 4.5 ng ml(-1) (95% CI 4.1-5.0) in 2000 compared to 2.2 ng ml(-1) (95% CI 1.9-2.6) in 2005 (p<0.0001). The decrease was consistent across donors' age and sex. To confirm these preliminary findings, additional sub-sets of year 2000 samples will be analyzed, and a much larger biomonitoring study of other locations is planned.  相似文献   
158.
Fugitive emissions account for approximately 50% of total hydrocarbon emissions from process plants. Federal and state regulations aiming at controlling these emissions require refineries and petrochemical plants in the United States to implement a Leak Detection and Repair Program (LDAR). The current regulatory work practice, U.S. Environment Protection Agency Method 21, requires designated components to be monitored individually at regular intervals. The annual costs of these LDAR programs in a typical refinery can exceed US$1,000,000. Previous studies have shown that a majority of controllable fugitive emissions come from a very small fraction of components. The Smart LDAR program aims to find cost-effective methods to monitor and reduce emissions from these large leakers. Optical gas imaging has been identified as one such technology that can help achieve this objective. This paper discusses a refinery evaluation of an instrument based on backscatter absorption gas imaging technology. This portable camera allows an operator to scan components more quickly and image gas leaks in real time. During the evaluation, the instrument was able to identify leaking components that were the source of 97% of the total mass emissions from leaks detected. More than 27,000 components were monitored. This was achieved in far less time than it would have taken using Method 21. In addition, the instrument was able to find leaks from components that are not required to be monitored by the current LDAR regulations. The technology principles and the parameters that affect instrument performance are also discussed in the paper.  相似文献   
159.
To evaluate the acid deposition reduction negotiated for 2010 within the UNECE LRTAP Gothenburg Protocol, sulphur and nitrogen deposition time-series (1880–2100) were compared to critical loads of acidity on five French ecosystems: Massif Central basalt (site 1) and granite (2); Paris Bassin tertiary sands (3); Vosges mountains sandstone (4) and Landes eolian sands (5). The SAFE model was used to estimate the response of soil solution pH and ratio to the deposition scenario. Among the five sites, critical loads were exceeded in the past at sites 3, 4 and 5. Sites 3 and 4 were still expected to exceed in 2010, the Protocol year. Further reduction of atmospheric deposition, mainly nitrogen, would be needed to achieve recovery on these ecosystems. At sites 3, 4 and 5, the delay between the critical load exceedance and the violation of the critical chemical criterion was estimated to be 10 to 30 years in the top soil and 50 to 90 years in the deeper soil. At site 5, a recovery was expected in the top soil in 2010 with a time lag of 10 years. Unexpectedly, soil pH continued to decrease after 1980 in the deeper soil at sites 2 and 5. This time lag indicated that acidification moved down the soil profile as a consequence of slow base cation depletion by ion exchange. This delayed response of the soil solution was the result of the combination of weathering rates and vegetation uptake but also of the relative ratio between base cation deposition and acid compounds.  相似文献   
160.
Previous work in this laboratory has confirmed that the bacteria Mycobacterium sp. strain RJGII.135 and Sphingomonas yanoikuyae strain B1 and the green alga Selanastrum capricornutum strain UTEX 1648 degrade benzo[a]pyrene (BaP) to various BaP intermediates. S. capricornutum was first grown with BaP for 4 days. The organic extract of this media was then introduced into separate cultures of strain RJGII.135 and strain B1; separate cultures were grown with BaP for comparison. Cultures grown with BaP and those grown with the algal/BaP extract showed similar mineralization patterns. The quantity of total metabolites formed was greater in bacterial cultures grown with the algal/BaP extract than those grown with BaP alone. For strain RJGII.135, only 27% of the original BaP remained in cultures grown with the algal/BaP extract; 59% remained in cultures grown with BaP. For strain B1, only 6% of the original BaP remained in cultures grown with the algal/BaP extract; 38% remained in cultures grown with BaP. These results indicate that strategies utilizing organisms together may be necessary in being able to degrade large, recalcitrant polycyclic aromatic hydrocarbons (PAHs) such as BaP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号