首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5168篇
  免费   145篇
  国内免费   62篇
安全科学   286篇
废物处理   175篇
环保管理   1323篇
综合类   564篇
基础理论   1401篇
环境理论   8篇
污染及防治   1045篇
评价与监测   333篇
社会与环境   178篇
灾害及防治   62篇
  2023年   59篇
  2022年   58篇
  2021年   59篇
  2020年   63篇
  2019年   75篇
  2018年   123篇
  2017年   139篇
  2016年   185篇
  2015年   128篇
  2014年   165篇
  2013年   434篇
  2012年   239篇
  2011年   316篇
  2010年   210篇
  2009年   243篇
  2008年   274篇
  2007年   270篇
  2006年   236篇
  2005年   202篇
  2004年   188篇
  2003年   155篇
  2002年   145篇
  2001年   95篇
  2000年   103篇
  1999年   78篇
  1998年   84篇
  1997年   64篇
  1996年   66篇
  1995年   82篇
  1994年   75篇
  1993年   66篇
  1992年   58篇
  1991年   42篇
  1990年   37篇
  1989年   41篇
  1988年   31篇
  1987年   41篇
  1986年   43篇
  1985年   43篇
  1984年   47篇
  1983年   46篇
  1982年   53篇
  1981年   43篇
  1980年   32篇
  1979年   20篇
  1978年   29篇
  1977年   20篇
  1976年   13篇
  1975年   12篇
  1971年   9篇
排序方式: 共有5375条查询结果,搜索用时 31 毫秒
181.
A multi-disciplinary approach was used to evaluate the health of yellow perch (Perca flavescens) in the St. Lawrence River (Quebec, Canada), which is experiencing a severe population decline in the downstream portion of the river. Physiological parameters, liver alterations, trace metal concentrations, parasite prevalence and abundance, stable isotope composition, and the presence/absence of the viral hemorragic septicemia virus (VHSV) were evaluated in perch collected at six sites along the river: Lake St. François, Lake St. Louis (north and south), Beauregard Island, and Lake St. Pierre (north and south). Trace metal concentrations in surface water were higher in Lake St. Louis and downstream of a major urban wastewater treatment plant discharge, indicating that this effluent was a significant source of Cu, As, Ag, Zn, and Cd. Levels of Pb in surface water exceeded thresholds for the protection of aquatic life in Lake St. Louis and were negatively correlated with body condition index in this lake. In Lake St. Pierre, Cu, Ag, and Cd bioaccumulated significantly in perch liver and lower body condition index and greater liver damage were observed compared to upstream sites. Parasite analyses indicated a higher abundance of metacercariae of the trematodes Apophallus brevis and Diplostomum spp. in Lake St. Louis, and VHSV was not detected in the liver of yellow perch for all studied sites. Overall, results suggested that the global health of yellow perch from Lake St. Pierre is lower compared to upstream studied sites, which could contribute to the documented population collapse at this site.  相似文献   
182.

The influence of the presence of the so-called seed particles on the emission rate of Tris (1-chloroisopropyl) phosphate (TCIPP) from polyisocyanurate (PIR) insulation boards was investigated in this study. Two Field and Laboratory Emission Test cells (FLEC) were placed on the surface of the same PIR board and respectively supplied with clean air (reference FLEC) and air containing laboratory-generated soot particles (test FLEC). The behavior of the area-specific emission rates (SER A ) over a time period of 10 days was studied by measuring the total (gas?+?particles) concentrations of TCIPP at the exhaust of each FLEC. The estimated SER A of TCIPP from the PIR board at the quasi-static equilibrium were found to be 0.82 μg m?2 h?1 in the absence of seed particles, while the addition of soot particles led to SER A of 2.16 μg m?2 h?1. This indicates an increase of the SER A of TCIPP from the PIR board with a factor of 3 in the presence of soot particles. The TCIPP partition coefficient to soot particles at the quasi-static equilibrium was 0.022?±?0.012 m3 μg?1. In the next step, the influence of real-life particles on TCIPP emission rates was investigated by supplying the test FLEC with air from a professional kitchen where mainly frying and baking activities took place. Similar to the reference FLEC outcomes, SER A was also found to increase in this real-life experiment over a time period of 20 days by a factor 3 in the presence of particles generated during cooking activities. The median value of estimated particle–gas coefficient for this test was 0.062?±?0.037 m3 μg?1.

  相似文献   
183.
The energy supply infrastructure in the United States has been changing dramatically over the past decade. Increased production of oil and natural gas, particularly from shale resources using horizontal drilling and hydraulic fracturing, made the United States the world’s largest producer of oil and natural gas in 2014. This review examines air quality impacts, specifically, changes in greenhouse gas, criteria air pollutant, and air toxics emissions from oil and gas production activities that are a result of these changes in energy supplies and use. National emission inventories indicate that volatile organic compound (VOC) and nitrogen oxide (NOx) emissions from oil and gas supply chains in the United States have been increasing significantly, whereas emission inventories for greenhouse gases have seen slight declines over the past decade. These emission inventories are based on counts of equipment and operational activities (activity factors), multiplied by average emission factors, and therefore are subject to uncertainties in these factors. Although uncertainties associated with activity data and missing emission source types can be significant, multiple recent measurement studies indicate that the greatest uncertainties are associated with emission factors. In many source categories, small groups of devices or sites, referred to as super-emitters, contribute a large fraction of emissions. When super-emitters are accounted for, multiple measurement approaches, at multiple scales, produce similar results for estimated emissions. Challenges moving forward include identifying super-emitters and reducing their emission magnitudes. Work done to date suggests that both equipment malfunction and operational practices can be important. Finally, although most of this review focuses on emissions from energy supply infrastructures, the regional air quality implications of some coupled energy production and use scenarios are examined. These case studies suggest that both energy production and use should be considered in assessing air quality implications of changes in energy infrastructures, and that impacts are likely to vary among regions.

Implications: The energy supply infrastructure in the United States has been changing dramatically over the past decade, leading to changes in emissions from oil and natural gas supply chain sources. In many source categories along these supply chains, small groups of devices or sites, referred to as super-emitters, contribute a large fraction of emissions. Effective emission reductions will require technologies for both identifying super-emitters and reducing their emission magnitudes.  相似文献   

184.
Corals and coral-associated species are highly vulnerable to the emerging effects of global climate change. The widespread degradation of coral reefs, which will be accelerated by climate change, jeopardizes the goods and services that tropical nations derive from reef ecosystems. However, climate change impacts to reef social–ecological systems can also be bi-directional. For example, some climate impacts, such as storms and sea level rise, can directly impact societies, with repercussions for how they interact with the environment. This study identifies the multiple impact pathways within coral reef social–ecological systems arising from four key climatic drivers: increased sea surface temperature, severe tropical storms, sea level rise and ocean acidification. We develop a novel framework for investigating climate change impacts in social–ecological systems, which helps to highlight the diverse impacts that must be considered in order to develop a more complete understanding of the impacts of climate change, as well as developing appropriate management actions to mitigate climate change impacts on coral reef and people.  相似文献   
185.
While many studies and reviews into the practices conducted by industry and academia to recycle and remanufacture carbon fibre-reinforced plastic (CFRP) exist, to date no investigation exists which regards the correctness of the use of the terms recycling and remanufacturing. As such, this paper seeks to analyse the CFRP reuse industry’s attempt to recycle and remanufacture manufacturing waste CFRP and end-of-life (EOL) CFRP with an emphasis on the terminology used to describe these practices. Firstly, this paper presents a justification of the importance of using EOL terminology correctly; outlining the benefits and problems associated with using the correct and incorrect terminology. This paper finds that in the case of CFRP remanufacturing, terminology is being applied incorrectly and in the case of CFRP recycling, particular care should be taken when applying the term recycled to CFRP or stating that CFRP has been recycled. Further, this paper proposes new terminology (in keeping with EU directives) which could be adopted by industry and academia working in this area. This paper also finds that in the case of remanufacture, CFRP is incapable of being remanufactured.  相似文献   
186.
An innovative biodegradation test system was developed in order to fill the current gap for cost effective and environmentally relevant tools to assess marine biodegradability. Glass beads were colonized by a biofilm in an open flow-through system of seawater with continuous pre-exposure to Linear Alkylbenzene Sulfonate (LAS) (20 μg/L). Thereafter, such colonized beads were added as inoculum in different test systems. [14C]-LAS (5–100 μg/L) was added and primary and ultimate biodegradation were assessed. The bacterial density collected on the beads (109 bact./mL beads) was ca. 3 orders of magnitude higher than the typical seawater content. The LAS mineralization lag phase duration decreased from 55 to < 1 days and the mineralization extent increased from 53 to 90% as the colonized beads volume increased from 10 to 275 mL. This is the first demonstration of marine bacteria's ability to mineralize LAS. On the opposite, less than 13% LAS was mineralized in seawater only. The colonized beads possibly enhanced the probability to encounter the full degraders' consortium in a low volume of seawater (100 mL).  相似文献   
187.
This paper presents an innovative, quantitative assessment of pollution avoidance attributable to environmental regulation enforced through integrated licensing, using Ireland's pharmaceutical-manufacturing sector as a case study. Emissions data reported by pharmaceutical installations were aggregated into a pollution trend using an Environmental Emissions Index (EEI) based on Lifecycle Assessment methodologies. Complete sectoral emissions data from 2001 to 2007 were extrapolated back to 1995, based on available data. Production volume data were used to derive a sectoral production index, and determine ‘no-improvement’ emission trends, whilst questionnaire responses from 20 industry representatives were used to quantify the contribution of integrated licensing to emission avoidance relative to these trends. Between 2001 and 2007, there was a 40% absolute reduction in direct pollution from 27 core installations, and 45% pollution avoidance relative to hypothetical ‘no-improvement’ pollution. It was estimated that environmental regulation avoided 20% of ‘no-improvement’ pollution, in addition to 25% avoidance under business-as-usual. For specific emissions, avoidance ranged from 14% and 30 kt a− 1 for CO2 to 88% and 598 t a− 1 for SOx. Between 1995 and 2007, there was a 59% absolute reduction in direct pollution, and 76% pollution avoidance. Pollution avoidance was dominated by reductions in emissions of VOCs, SOx and NOx to air, and emissions of heavy metals to water. Pollution avoidance of 35% was attributed to integrated licensing, ranging from between 8% and 2.9 t a− 1 for phosphorus emissions to water to 49% and 3143 t a− 1 for SOx emissions to air. Environmental regulation enforced through integrated licensing has been the major driver of substantial pollution avoidance achieved by Ireland's pharmaceutical sector — through emission limit values associated with Best Available Techniques, emissions monitoring and reporting requirements, and performance targets specified in environmental management plans. This compliant sector offers a positive, but not necessarily typical, case study of IPPC effectiveness.  相似文献   
188.
This study quantifies the disruption of zooplankton population fluctuations in relation to two magnitudes of fire retardant contamination events using artificial ponds as model systems. Population time series were analysed using redundancy analysis where time was modelled with a principal coordinate of neighborhood matrices approach that identified relevant scales of fluctuation frequencies. Analyses of temporal coherence provided insight whether population fluctuations correlated with system intrinsic or extrinsic forces. Responses to stress were species-specific and context-dependant. Contamination changed temporal structure in some species. These alterations were associated with an increased intrinsic control of dynamics. In some cases the magnitude of impact was unrelated to contamination severity. Some populations were less tolerant of pollution in the low relative to the high concentration treatment. Results suggest that population-level monitoring of degraded sites may be suboptimal because disparate population responses complicate the selection of specific sentinel organisms to monitor stress.  相似文献   
189.
Spatial gradients of vehicular emitted air pollutants were measured in the vicinity of three roadways in the Austin, Texas area: (1) State Highway 71 (SH-71), a heavily traveled arterial highway dominated by passenger vehicles; (2) Interstate 35 (I-35), a limited access highway north of Austin in Georgetown; and (3) Farm to Market Road 973 (FM-973), a heavily traveled surface roadway with significant truck traffic. A mobile monitoring platform was used to characterize the gradients of CO and NOx concentrations with increased distance from each roadway, while concentrations of carbonyls in the gas-phase and fine particulate matter mass and composition were measured at stationary sites upwind and at one (I-35 and FM-973) or two (SH-71) downwind sites. Regardless of roadway type or wind direction, concentrations of carbon monoxide (CO), nitric oxide (NO), and oxides of nitrogen (NOx) returned to background levels within a few hundred meters of the roadway. Under perpendicular wind conditions, CO, NO and NOx concentrations decreased exponentially with increasing distance perpendicular to the roadways. The decay rate for NO was more than a factor of two greater than for CO, and it comprised a larger fraction of NOx closer to the roadways than further downwind suggesting the potential significance of near roadway chemical processing as well as atmospheric dilution. Concentrations of most carbonyl species decreased with distance downwind of SH-71. However, concentrations of acetaldehyde and acrolein increased farther downwind of SH-71, suggesting chemical generation from the oxidation of primary vehicular emissions. The behavior of particle-bound organic species was complex and further investigation of the size-segregated chemical composition of particulate matter (PM) at increasing downwind distances from roadways is warranted. Fine particulate matter (PM2.5) mass concentrations, polycyclic aromatic hydrocarbons (PAHs), hopanes, and elemental carbon (EC) concentrations generally exhibited concentrations that decreased with distance downwind of SH-71. Concentrations of organic carbon (OC) increased from upwind concentrations immediately downwind of SH-71 and continued to increase further downwind from the roadway. This behavior may have primarily resulted from condensation of semi-volatile organic species emitted from vehicle sources with transport downwind of the roadway.  相似文献   
190.
We use a global chemical transport model (GEOS-Chem) with 1° × 1° horizontal resolution to quantify the effects of anthropogenic emissions from Canada, Mexico, and outside North America on daily maximum 8-hour average ozone concentrations in US surface air. Simulations for summer 2001 indicate mean North American and US background concentrations of 26 ± 8 ppb and 30 ± 8 ppb, as obtained by eliminating anthropogenic emissions in North America vs. in the US only. The US background never exceeds 60 ppb in the model. The Canadian and Mexican pollution enhancement averages 3 ± 4 ppb in the US in summer but can be occasionally much higher in downwind regions of the northeast and southwest, peaking at 33 ppb in upstate New York (on a day with 75 ppb total ozone) and 18 ppb in southern California (on a day with 68 ppb total ozone). The model is successful in reproducing the observed variability of ozone in these regions, including the occurrence and magnitude of high-ozone episodes influenced by transboundary pollution. We find that exceedances of the 75 ppb US air quality standard in eastern Michigan, western New York, New Jersey, and southern California are often associated with Canadian and Mexican pollution enhancements in excess of 10 ppb. Sensitivity simulations with 2020 emission projections suggest that Canadian pollution influence in the Northeast US will become comparable in magnitude to that from domestic power plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号