首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   847篇
  免费   22篇
  国内免费   9篇
安全科学   33篇
废物处理   78篇
环保管理   99篇
综合类   113篇
基础理论   161篇
环境理论   1篇
污染及防治   236篇
评价与监测   85篇
社会与环境   64篇
灾害及防治   8篇
  2023年   24篇
  2022年   58篇
  2021年   46篇
  2020年   27篇
  2019年   23篇
  2018年   58篇
  2017年   38篇
  2016年   42篇
  2015年   36篇
  2014年   53篇
  2013年   74篇
  2012年   39篇
  2011年   49篇
  2010年   27篇
  2009年   36篇
  2008年   37篇
  2007年   31篇
  2006年   39篇
  2005年   22篇
  2004年   16篇
  2003年   22篇
  2002年   17篇
  2001年   18篇
  2000年   6篇
  1999年   5篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   3篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1969年   1篇
排序方式: 共有878条查询结果,搜索用时 777 毫秒
61.
Tin or stannous (Sn2+) compounds are used as catalysts, stabilizers in plastic industries, wood preservatives, agricultural biocides and nuclear medicine. In order to verify the Sn2+ up-take and toxicity in yeast cells we utilized a multi-elemental analysis known as particle-induced X-ray emission (PIXE) along with cell survival assays and quantitative real-time PCR. The detection of Sn2+ by PIXE was possible only in yeast cells in stationary phase of growth (STAT cells) that survive at 25 mM Sn2+ concentration. Yeast cells in exponential phase of growth (LOG cells) tolerate only micro-molar Sn2+ concentrations that result in intracellular concentration below of the method detection limit. Our PIXE analysis showed that STAT XV185-14c yeast cells demonstrate a significant loss of intracellular elements such as Mg, Zn, S, Fe and an increase in P levels after 1 h exposure to SnCl2. The survival assay showed enhanced tolerance of LOG yeast cells lacking the low-affinity iron and zinc transporters to stannous treatment, suggesting the possible involvement in Sn2+ uptake. Moreover, our qRT-PCR data showed that Sn2+ treatment could generate reactive oxygen species as it induces activation of many stress-response genes, including SOD1, YAP1, and APN1.  相似文献   
62.
The climate in Timor Leste (East Timor) is predicted to become about 1.5 °C warmer and about 10 % wetter on average by 2050. By the same year, the population is expected to triple from 1 to 2.5–3 million. This article maps the predicted changes in temperature and rainfall and reviews the implications of climate change and population growth on agricultural systems. Improved cultivars of maize, rice, cassava, sweet potato and peanuts with high yield performance have been introduced, but these will need to be augmented in the future with better adapted cultivars and new crops, such as food and fodder legumes and new management practices. The requirements for fertilizers to boost yields and terracing and/or contour hedgerows to prevent soil erosion of steeply sloping terrain are discussed. Contour hedges can also be used for fodder for improved animal production to provide protein to reduce malnutrition.  相似文献   
63.
Mesotrione is a benzoylcyclohexane-1,3-dione herbicide that inhibits 4-hydroxyphenyl pyruvate dioxygenase in target plants. Although it has been used since 2000, only a limited number of degrading microorganisms have been reported. Mesotrione-degrading bacteria were selected among strains isolated from Brazilian aquatic environments, located near corn fields treated with this herbicide. Pantoea ananatis was found to rapidly and completely degrade mesotrione. Mesotrione did not serve as a sole C, N, or S source for growth of P. ananatis, and mesotrione catabolism required glucose supplementation to minimal media. LC-MS/MS analyses indicated that mesotrione degradation produced intermediates other than 2-amino-4-methylsulfonyl benzoic acid or 4-methylsulfonyl-2-nitrobenzoic acid, two metabolites previously identified in a mesotrione-degrading Bacillus strain. Since P. ananatis rapidly degraded mesotrione, this strain might be useful for bioremediation purposes.  相似文献   
64.
The Tubarão River rises in Santa Catarina, Brazil, and has been historically affected by coal mining activities around its springhead. To evaluate its water conditions, an investigation regarding a possible decontamination gradient associated with the increased river flow toward the estuary, as well as the influence of seasonality over this gradient was performed through a series of biomarkers (vitellogenin, comet assay, lipid peroxidation, protein carbonylation, gluthatione, gluthatione S-transferase, acetylcholinesterase, light microscopy in liver, and scanning electron microscopy in gills) and chemical analysis (polycyclic aromatic hydrocarbons (PAHs) in bile and metal analysis in sediment) in the cichlid Geophagus brasiliensis. Two collections (summer and winter) were made in four distinct sites along the river, while sediments were sampled between those seasons. As expected, the contamination linked exclusively to mining activities was not observed, possibly due to punctual inputs of contaminants. The decontamination gradient was not observed, although seasonality seemed to have a critical role in the responses of biomarkers and availability of contaminants. In the summer, the fish presented higher histopathological damages and lower concentrations of PAHs, while in the winter they showed both higher genetic damage and accumulation of PAHs. The Tubarão suffers impacts from diverse activities, representing health risks for wild and human populations.  相似文献   
65.
The fate of excess nitrogen in estuaries is determined by the microbial-driven nitrogen cycle, being denitrification a key process since it definitely removes fixed nitrogen as N2. However, estuaries receive and retain metals, which may negatively affect this process efficiency. In this study, we evaluated the role of salt marsh plants in mediating cadmium (Cd) impact on microbial denitrification process. Juncus maritimus and Phragmites australis from an estuary were collected together with the sediment involving their roots, each placed in vessels and maintained in a greenhouse, exposed to natural light, with tides simulation. Similar non-vegetated sediment vessels were prepared. After 3 weeks of accommodation, nine vessels (three per plant species plus three non-vegetated) were doped with 20 mg/L Cd2+ saline solution, nine vessels were doped with 2 mg/L Cd2+ saline solution and nine vessels were left undoped. After 10 weeks, vessels were dissembled and denitrification potential was measured in sediment slurries. Results revealed that the addition of Cd did not cause an effect on the denitrification process in non-vegetated sediment but had a clear stimulation in colonized ones (39 % for P. australis and 36 % for J. maritimus). In addition, this increase on denitrification rates was followed by a decrease on N2O emissions and on N2O/N2 ratios in both J. maritimus and P. australis sediments, increasing the efficiency of the N2O step of denitrification pathway. Therefore, our results suggested that the presence of salt marsh plants functioned as key mediators on the degree of Cd impact on microbial denitrification.  相似文献   
66.
基于遥感反演长江中游地区悬浮泥沙研究   总被引:1,自引:0,他引:1  
悬浮泥沙定量研究对于调查长江的水质、地貌、生态环境等起着至关重要的作用。以长江中游武汉地区2012~2013年14幅不同时相的Landsat ETM+遥感影像为主要数据源,结合野外采样悬浮泥沙浓度数据,分析了悬浮泥沙遥感定量反演方法,数据处理中针对ETM+SLC OFF影像缝隙问题,采用自适应局部回归匹配算法(ALR)进行影像自动恢复处理,在波段选择中对悬浮泥沙浓度和光谱反射率数据进行相关性分析,并运用传统关系建模方法和高斯模型方法对比,比较悬浮泥沙定量反演模型,利用实测验证数据对反演模型精度进行评估。研究结果表明:(1)ALR可以有效的获取悬浮泥沙敏感波段的遥感光谱反射率;(2)ETM+Band3悬浮泥沙浓度的高斯模型相关系数最高,通过对比得到模型反演的验证精度较高,研究证明遥感定量反演适合于长江流域武汉段泥沙含量大范围监测  相似文献   
67.
A method for the identification and quantification of pesticide residues in water, soil, and sediment samples has been developed, validated, and applied for the analysis of real samples. The specificity was determined by the retention time and the confirmation and quantification of analyte ions. Linearity was demonstrated over the concentration range of 20 to 120 µg L?1, and the correlation coefficients varied between 0.979 and 0.996, depending on the analytes. The recovery rates for all analytes in the studied matrix were between 86% and 112%. The intermediate precision and repeatability were determined at three concentration levels (40, 80, and 120 µg L?1), with the relative standard deviation for the intermediate precision between 1% and 5.3% and the repeatability varying between 2% and 13.4% for individual analytes. The limits of detection and quantification for fipronil, fipronil sulfide, fipronil-sulfone, and fipronil-desulfinyl were 6.2, 3.0, 6.6, and 4.0 ng L?1 and 20.4, 9.0, 21.6, and 13.0 ng L?1, respectively. The method developed was used in water, soil, and sediment samples containing 2.1 mg L?1 and 1.2% and 5.3% of carbon, respectively. The recovery of pesticides in the environmental matrices varied from 88.26 to 109.63% for the lowest fortification level (40 and 100 µg kg?1), from 91.17 to 110.18% for the intermediate level (80 and 200 µg kg?1), and from 89.09 to 109.82% for the highest fortification level (120 and 300 µg kg?1). The relative standard deviation for the recovery of pesticides was under 15%.  相似文献   
68.
As plants constitute the foundation of the food chain, concerns have been raised about the possibility of toxic concentrations of metals and metalloids being transported from plants to the higher food chain strata. In this perspective, the use of important phytotoxicity endpoints may be of utmost significance in assessing the hazardous nature of metals and metalloids and also in developing ecological soil screening levels. The current study aimed to investigate the role of glutathione (GSH) and its associated enzymes in the metabolic adaptation of two grass species namely Eriophorum angustifolium Honck. and Lolium perenne L. to metals and metalloids stress in the vicinity of a chemical industrial complex (Estarreja, Portugal). Soil and plant samples were collected from contaminated (C) and non-contaminated (reference, R) sites, respectively, near and away from the Estarreja Chemical Complex, Portugal. Soils (from 0 to 10 and 10 to 20 cm depths) were analyzed for pH, organic carbon, and metals and metalloids concentrations. Plant samples were processed fresh for physiological and biochemical estimations, while oven-dried plant samples were used for metals and metalloids determinations following standard methodologies. Both soils and plants from the industrial area exhibited differential concentrations of major metals and metalloids including As, Cu, Hg, Pb, and Zn. In particular, L. perenne shoot displayed significantly higher and lower concentrations of Pb and As, respectively at contaminated site (vs. E. angustifolium). Irrespective of sites, L. perenne shoot exhibited significantly higher total GSH pool, oxidized glutathione (GSSG) and oxidized protein (vs. E. angustifolium). Additionally, severe damages to photosynthetic pigments, proteins, cellular membrane integrity (in terms of electrolyte leakage), and lipid peroxidation were also perceptible in L. perenne shoot. Contrarily, irrespective of the sites, activities of catalase and GSH-regenerating enzyme, GSH reductase, and GSH-metabolizing enzymes such as GSH peroxidase and GSH sulfotransferase were significantly higher in shoot of E. angustifolium. Despite the higher total GSH content, L. perenne is vulnerable to multi-metals-induced stress in comparison to E. angustifolium as depicted by increased GSH- and protein oxidation, low reactive oxygen radical-processing potential (exhibited in terms of low catalase activity) and poor GSH pool utilization efficiency (in terms of lower GSH-associated enzymes activities). The outcome of the present study may be significant for understanding vital GSH-mediated metals and metalloids tolerance mechanisms in plants as well as their unsuitability for animal consumption due to higher metals and metalloids burdens.  相似文献   
69.
Through the years, mining and beneficiation processes produces large amounts of As-rich mine wastes laid up in huge tailings and open-air impoundments (Barroca Grande and Rio tailings) that are the main source of pollution in the surrounding area once they are exposed to the weathering conditions leading to the formation of AMD and consequently to the contamination of the surrounding environments, in particularly soils. In order to investigate the environmental contamination impact on S. Francisco de Assis (village located between the two major impoundments and tailings) agricultural soils, a geochemical survey was undertaken to assess toxic metals associations, related levels and their spatial distribution, and to identify the possible contamination sources. According to the calculated contamination factor, As and Zn have a very high contamination factor giving rise to 65.4 % of samples with a moderate to high pollution degree; 34.6 % have been classified as nil to very low pollution degree. The contamination factor spatial distribution put in evidence the fact that As, Cd, Cu, Pb, and Zn soils contents, downstream Barroca Grande tailing, are increased when compared with the local Bk soils. The mechanical dispersion, due to erosion, is the main contamination source. The chemical extraction demonstrates that the trace metals distribution and accumulation in S. Francisco de Assis soils is related to sulfides, but also to amorphous or poorly crystalline iron oxide phases. The partitioning study allowed understanding the local chemical elements mobility and precipitation processes, giving rise to the contamination dispersion model of the study area. The wind and hydrological factors are responsible for the chemical elements transport mechanisms, the water being the main transporter medium and soils as one of the possible retention media.  相似文献   
70.
Despite increasingly large investments, the potential ecological effects of river restoration programs are still small compared to the degree of human alterations to physical and ecological function. Thus, it is rarely possible to “restore” pre-disturbance conditions; rather restoration programs (even large, well-funded ones) will nearly always involve multiple small projects, each of which can make some modest change to selected ecosystem processes and habitats. At present, such projects are typically selected based on their attributes as individual projects (e.g., consistency with programmatic goals of the funders, scientific soundness, and acceptance by local communities), and ease of implementation. Projects are rarely prioritized (at least explicitly) based on how they will cumulatively affect ecosystem function over coming decades. Such projections require an understanding of the form of the restoration response curve, or at least that we assume some plausible relations and estimate cumulative effects based thereon. Drawing on our experience with the CALFED Bay-Delta Ecosystem Restoration Program in California, we consider potential cumulative system-wide benefits of a restoration activity extensively implemented in the region: isolating/filling abandoned floodplain gravel pits captured by rivers to reduce predation of outmigrating juvenile salmon by exotic warmwater species inhabiting the pits. We present a simple spreadsheet model to show how different assumptions about gravel pit bathymetry and predator behavior would affect the cumulative benefits of multiple pit-filling and isolation projects, and how these insights could help managers prioritize which pits to fill.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号