首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17426篇
  免费   282篇
  国内免费   320篇
安全科学   613篇
废物处理   737篇
环保管理   2592篇
综合类   2915篇
基础理论   4482篇
环境理论   7篇
污染及防治   4549篇
评价与监测   991篇
社会与环境   1016篇
灾害及防治   126篇
  2022年   159篇
  2021年   161篇
  2020年   181篇
  2019年   141篇
  2018年   282篇
  2017年   256篇
  2016年   396篇
  2015年   318篇
  2014年   445篇
  2013年   1405篇
  2012年   605篇
  2011年   882篇
  2010年   663篇
  2009年   761篇
  2008年   824篇
  2007年   871篇
  2006年   717篇
  2005年   604篇
  2004年   621篇
  2003年   563篇
  2002年   536篇
  2001年   642篇
  2000年   518篇
  1999年   315篇
  1998年   209篇
  1997年   228篇
  1996年   222篇
  1995年   266篇
  1994年   209篇
  1993年   208篇
  1992年   174篇
  1991年   182篇
  1990年   178篇
  1989年   180篇
  1988年   153篇
  1987年   133篇
  1986年   156篇
  1985年   143篇
  1984年   190篇
  1983年   147篇
  1982年   171篇
  1981年   157篇
  1980年   130篇
  1979年   149篇
  1978年   94篇
  1977年   98篇
  1975年   88篇
  1974年   93篇
  1973年   86篇
  1972年   96篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
931.

Ninety Capsicum accessions selected from the USDA Capsicum germplasm collection were screened for their capsaicinoids content using gas hromatography with nitrogen phosphorus detection (GC/NPD). Fresh fruits of Capsicum chinense, C. frutescens, C. baccatum, C. annuum, and C. pubescens were extracted with methanol and analyzed for capsaicin, dihydrocapsaicin, and nordihydrocapsaicin. Mass spectrometry of the fruit crude extracts indicated that the molecular ions at m/z 305, 307, and 293, which correspond to capsaicin, dihydrocapsaicin, and nordihydrocapsaicin, respectively, have a common benzyl cation fragment at m/z 137 that can be used for monitoring capsaicinoids in pepper fruit extracts. Capsaicin and dihydrocapsaicin were the dominant capsaicinoids detected. Capsaicin concentrations were typically greater than dihydrocapsaicin. Concentrations of total capsaicinoids varied from not detectable to 11.2 mg fruit?1. Statistical analysis revealed that accession PI-441624 (C. chinense) had the highest capsaicin content (2.9 mg g?1 fresh fruit) and accession PI-497984 (C. frutescens) had the highest dihydrocapsaicin content (2.3 mg g?1 fresh fruit). Genebank accessions PI-439522 (C. frutescens) and PI-497984 contained the highest concentrations of total capsaicinoids.  相似文献   
932.
The main objective of this investigation was to evaluate fruits of C. chinense accessions for their concentration of β -carotene, ascorbic acid, and phenols for use as parents in breeding for these phytochemicals. Mature fruits of 63 accessions of C. chinense originally acquired from Belize, Brazil, Colombia, Ecuador, Mexico, Peru, Puerto Rico, and the United States were analyzed for their chemical composition. Fruits of C. chinense accessions PI-152452 (Brazil) and PI-360726 (Ecuador) contained the greatest concentrations of ascorbic acid (1.2 and 1.1 mg g?1 fresh fruit, respectively), while PI-438648 (Mexico) contained the greatest concentration of total phenols content (349 μ g g?1 fresh fruit) among the other 63 accessions tested. Accession PI-355817 from Ecuador contained the greatest concentrations of β -carotene (8 mg g?1fresh fruit). These accessions were identified as potential candidates for mass production of antioxidants with health-promoting properties.  相似文献   
933.
A study of the anaerobic treatment of wastewaters derived from red (RWWW) and tropical fruit wine (TFWWW) production was carried out in four laboratory-scale fluidized bed reactors with natural zeolite as bacterial support. These reactors operated at mesophilic temperature (35°C). Reactors R1 and R2 contained Chilean natural zeolite, while reactors R3 and R4 used Cuban natural zeolite as microorganism support. In addition, reactors R1 and R3 processed RWWW, while reactors R2 and R4 used TFWWW as substrate. The biomass concentration attached to zeolites in the four reactors studied was found to be in the range of 44–46 g volatile solids (VS)/L after 90 days of operation time. Both types of zeolites can be used indistinctly in the fluidized bed reactors achieving more than 80%–86% chemical oxygen demand (COD) removals for organic loading rates (OLR) of up to at least 20 g COD/L d. pH values remained within the optimal range for anaerobic microorganisms for OLR values of up to 20 and 22 g COD/L d for RWWW and TFWWW, respectively. Toxicity and inhibition levels were observed at an OLR of 20 g COD/L d in reactors R1 and R3 while processing RWWW, whereas the aforementioned inhibitory phenomena were not observed at an OLR of 24 g COD/L d in R2 and R4, treating TFWWW as a consequence of the lower phenolic compound content present in this substrate. The volatile fatty acid (VFA) levels were always lower in reactors processing TFWWW (R2 and R4) and these values (< 400 mg/L, as acetic acid) were lower than the suggested limits for digester failure. The specific methanogenic activity (SMA) was twice as high in reactors R2 and R4 than in R1 and R3 after 120 days of operation when all reactors operated at an OLR of 20 g COD/L d.  相似文献   
934.
The herbicide 2,4-D [2,4-(dichlorophenoxy) acetic acid] is one of the most widely used pesticides in the Canadian prairies and is frequently detected as a ground and surface water contaminant. The objective of this paper was to determine the magnitude and extent of variation of 2,4-D mineralization in a cultivated undulating prairie landscape. Microcosm incubation experiments, using a 4 × 3 × 2 factorial experimental design (soil moisture, 4 levels: 60, 85, 110, 135% of field capacity; slope position, 3 levels: upper-, mid- and lower-slopes; soil depth, 2 levels: 0–5 and 5–15 cm), were used to assess 2,4-D mineralization. The first-order mineralization rate constant (k1) varied from 0.03 to 0.22 day? 1, while total 2,4-D mineralization varied from 31 to 52%. At near-saturated conditions (110 and 135% of field capacity), the onset of 2,4-D degradation was delayed in soil obtained from the upper- and mid-slopes but not in soils obtained from the lower-slope position. The k1 and total 2,4-D mineralizationwas significantly influenced by all three factors and their interactions. The Freundlich sorption coefficient of 2,4-D ranged from 0.83 to 2.46 ug 1–1/ng? 1 mL1/n and was significantly influenced by variations in soil organic carbon content across slope positions. The infield variability of 2,4-D sorption and mineralization observed across slope positions in this undulating field was comparable in magnitude and extent to the regional variability of 2,4-D sorption and mineralization observed in surface soils across Manitoba. The large variability of 2,4-D mineralization and sorption at different slope positions in this cultivated undulating field suggests that landform segmentation models, which are used to delineate slope positions, are important considerations in pesticide fate studies.  相似文献   
935.
This work focused on the interactive effects of the fungicide chlorothalonil (2,3,4,6-tetrachloro-1,3-benzendicarbonitrile) and gypsum on the persistence of the soil-residual herbicide metolachlor (2-chloro-N-(6-ethyl-o-tolyl)-N-[(1RS)-2-methoxy-1-methylethyl]acetamide). Gypsum application was included due to its widespread use on peanut (Arachis hypogaea). Both agricultural grade gypsum and reagent CaSO4-2H2O were tested. A laboratory soil incubation was conducted to evaluate interactive effects. Results indicated 1.5X greater metolachlor half-life (DT50) in soil amended with chlorothalonil (37 d) as compared to control soil (25 d). The two gypsum sources alone increased metolachlor DT50 to about 32 d and with the combination of chlorothalonil and gypsum, DT50 was 50 d, 2-fold greater than the control. Chlorothalonil dissipation was rapid (DT50 < 4d). A possible explanation for metolachlor dissipation kinetics is a build-up of the chlorothalonil intermediate (4-hydroxychlorothalonil) which limited soil microbial activity and depleted glutathione S-transferase (GST) from chlorothalonil detoxification. Further information related to gypsum impacts is needed. Results confirm previous reports of chlorothalonil impeding metolachlor dissipation and showed the gypsum application extended persistence even longer. Farming practices, such as reducing metolachlor application rates, may need to be adjusted for peanut cropping systems where chlorothalonil and gypsum are used.  相似文献   
936.
Elevated concentrations of heavy metals in edible plants could expose consumers to excessive levels of potentially hazardous chemicals. Sixty-three accessions (genotypes) of Capsicum chinense Jacq, collected from 8 countries of origin were grown in a silty-loam soil under field conditions. At maturity, fruits were collected and analyzed for seven heavy metals (Cd, Cr, Ni, Pb, Zn, Cu, and Mo) concentrations. The main objectives of this investigation were: 1) to determine the concentrations of seven heavy metals in the soil and monitor their accumulation in mature fruits, 2) to categorize the pepper accessions as low or high heavy metal accumulators, and 3) to determine if heavy metal content of the pepper fruit was lower than the permitted limits. Concentrations and relative proportions of heavy metals in pepper fruits of C. chinense varied among accessions. Fruits of Plant Introduction (PI) 355820 accumulated significant concentrations of Cd (0.47 μ g g?1dry fruit). PI-260522 accumulated the highest concentration of Pb (2.12 μ g g?1 dry fruit) among the 63 accessions tested. This accession (PI-260522) contained about twice the Pb limit on a fresh weight basis. Among the 63 accessions analyzed, PI-238051 contained the highest levels of Ni (17.2 μ g g?1). We concluded that high accumulator genotypes may be useful for phytoremediation, while, low accumulator accessions might be appropriate selections for growing on Cd-, Pb-, or Ni-contaminated soils to prevent potential human exposure to heavy metals and health hazards through the food chain.  相似文献   
937.
Soil avoidance by earthworms has been generally considered a relevant and sensitive endpoint for assessing soil contamination by xenobiotics. However, when pesticide ecotoxicological assessment is concerned, the sensitivity of the recently standardized avoidance assay has been questioned. We hypothesized that this controversy may be due to the specific pesticide mode of action of the chemicals used rather than reveal inconsistencies in the test feasibility, i.e. provided that no pesticides interfering with neuronal pathways are tested, this bioassay should keep expected high levels of sensitivity. In this study, the avoidance behaviour of the earthworm Eisenia andrei under exposure to the carbamate insecticide methomyl [S-methyl N-(methylcarbamoyloxy)thioacetimidate] was linked to the corresponding acetylcholinesterase (AChE) inhibition. Significant AChE inhibition occurred at lower concentrations (from 0.86 mg Kg?1 onwards) than significant avoidance of spiked soil (from 5.62 mg Kg?1 onwards). This indicates that assessments regarding pesticides that have neurotoxic activity may be biased if behavioral endpoints are selected. Despite theoretical hypothesis that have been raised, this should be the first study providing preliminary experimental evidence on such a link between avoidance behavior and neuronal impairment levels in earthworms. Further studies are ongoing that should refine conclusions of this study.  相似文献   
938.
The goals of the present work were as follows: to obtain the dormant forms of R. opacus 1cp; to study the phenotypic variability during their germination; to compare phenotypic variants during the growth on selective and elective media; and to reveal changes in the ability of the strain to destruct xenobiotics that had not been degradable before dormancy. It was shown that Rhodococcus opacus 1cp (the strain degrading chlorinated phenols) became able to utilize a broader spectrum of xenobiotics after storage in the dormant state. Germination of the dormant forms of R. opacus 1cp on an agarized medium was followed by emergence and development of phenotypic variants that could grow on 4-chlorophenol and 2,4,6-trichlorophenol without adaptation. The cells of R. opacus 1cp phenotypic variants also utilized all of the tested chlorinated phenols: 2,3-, 2,5-, and 2,6-dichloro-, 2,3,4- and 2,4,5-trichloro-, pentachlorophenol, and 1,2,4,5-tetrachlorobenzene in concentrations up to 60 mg/L, though at the lower rates than 4-CP and 2,4,6-TCP. The improved degradation of chlorinated phenols by R. opacus strain 1cp exposed to the growth arrest conditions demonstrates the significance of dormancy for further manifestation of the adaptive potential of populations. A new principle of selection of variants with improved biodegradative properties was proposed. It embraces introduction of the dormancy stage into the cell life cycle with subsequent direct inoculation of morphologically different colonies into the media with different toxicants, including those previously not degraded by the strain.  相似文献   
939.
A psychrotolerant denitrifying bacterial strain, DBP-3, was isolated from a eutrophic body of water by low-temperature-oriented acclimation culture. Based on its morphologicalandbiochemicalcharacteristics and 16S rDNA gene sequence, the bacterium was identified as belonging to the genus Acinetobacter and closely related to A. johnonii. The satisfactory growth of DBP-3 was observed at 10–30°C and pH 7–9. Strain DBP-3 was able to utilize three types of carbon sources (sodium acetate > sodium citrate > glucose) to support growth and denitrification. DBP-3 grew faster, but with lower nitrate removal efficiency and higher nitrite accumulation, under aerobic conditions than under anoxic conditions. DBP-3 was extremely susceptible to tetracycline and rifampicine and less sensitive to ampicillin and penicillin. The growth of DBP-3 was significantly affected by Hg (II), Cr (VI), Pb (II), Cd (II), and As (III) at 0.32, 0.63, 1.25, 2.5, and 25.0 mg L?1, respectively. Interestingly, chromium (VI) significantly promoted DBP-3 growth at concentrations lower than 0.32 mg L?1. These data may be helpful to support the use of strain DBP-3 in the purification of eutrophic water bodies at low temperatures.  相似文献   
940.
The characteristic features of distribution of pesticide residues in crop units and single sample increments were studied based on more than 19,000 residue concentrations measured in root vegetables, leafy vegetables, small-, medium- and large-size fruits representing 20 different crops and 46 pesticides. Log-normal, gamma and Weibull distributions were found to provide the best fit for the relative frequency distributions of individual residue data sets. The overall best fit was provided by lognormal distribution. The relative standard deviation of residues (CV) in various crops ranged from 15–170%. The 100–120 residue values being in one data set was too small to identify potential effects of various factors such as the chemical and physical properties of pesticides and the nature of crops. Therefore, the average of CV values, obtained from individual data sets, were calculated and considered to be the best estimate for the likely variability of unit crop residues for treated field (CV = 0.8) and market samples (CV = 1.1), respectively. The larger variation of residues in market samples was attributed to the potential mixing of lots and varying proportion of non-detects. The expectable average variability of residues in composited samples can be calculated from the typical values taking into account the sample size.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号