首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   4篇
安全科学   1篇
废物处理   4篇
环保管理   16篇
基础理论   13篇
污染及防治   20篇
评价与监测   2篇
社会与环境   2篇
  2023年   3篇
  2021年   2篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2013年   7篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   4篇
  2001年   1篇
  2000年   1篇
  1993年   1篇
  1988年   1篇
  1986年   1篇
  1980年   2篇
  1979年   3篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有58条查询结果,搜索用时 0 毫秒
31.
32.
Circuit-theory applications to connectivity science and conservation   总被引:1,自引:0,他引:1  
Conservation practitioners have long recognized ecological connectivity as a global priority for preserving biodiversity and ecosystem function. In the early years of conservation science, ecologists extended principles of island biogeography to assess connectivity based on source patch proximity and other metrics derived from binary maps of habitat. From 2006 to 2008, the late Brad McRae introduced circuit theory as an alternative approach to model gene flow and the dispersal or movement routes of organisms. He posited concepts and metrics from electrical circuit theory as a robust way to quantify movement across multiple possible paths in a landscape, not just a single least-cost path or corridor. Circuit theory offers many theoretical, conceptual, and practical linkages to conservation science. We reviewed 459 recent studies citing circuit theory or the open-source software Circuitscape. We focused on applications of circuit theory to the science and practice of connectivity conservation, including topics in landscape and population genetics, movement and dispersal paths of organisms, anthropogenic barriers to connectivity, fire behavior, water flow, and ecosystem services. Circuit theory is likely to have an effect on conservation science and practitioners through improved insights into landscape dynamics, animal movement, and habitat-use studies and through the development of new software tools for data analysis and visualization. The influence of circuit theory on conservation comes from the theoretical basis and elegance of the approach and the powerful collaborations and active user community that have emerged. Circuit theory provides a springboard for ecological understanding and will remain an important conservation tool for researchers and practitioners around the globe.  相似文献   
33.
Abstract

The fumigant 1,3‐dichloropropene (1,3‐D) is considered to be a potential alternative to methyl bromide. The degradation rates of cis‐ and trans‐l,3‐D in soil from a treated site during three successive annual applications of 1,3‐D progressively increased with an increase in the number of annual applications. The enhancement was greater for trans‐l,3‐D degradation than cis‐l,3‐D. In untreated soil, the degradation rates of the two isomers were similar. The enhancement lasted slightly longer than 2 years after annual field application of 1,3‐D had ceased. A single field reapplication of 1,3‐D to the treated site that had not been treated for 2 years resulted in resumed differential enhanced degradation of cis‐ and trans‐l,3‐D. Microorganisms were responsible for the enhanced degradation.  相似文献   
34.
Disposal of mercury waste has always provided unique challenges due to its high degree of complexity and volatility. This study evaluated the feasibility of using waste LF slag to form a cementitious matrix capable of providing an effective stabilization/solidification solution for the treatment of mercury wastes. The new matrix was synthesized and simulated through a combination of alkali activation and autoclaving process and doped with mercury nitrate at increasing dosage while monitoring the final form of the mercury and its effects on the mineral stability and structure of the new matrix. Compressive strength of up to 20 N/mm2 was achievable for the original matrix. Promising results were obtained in terms of reduced leachability of the mercury when compared to ordinary Portland cement systems at low doping concentration of around 0.5% by weight. A series of precipitation reactions was found to be the main cause responsible for this successful stabilization, especially the metal sulfide precipitation that occurred with the sulfur present in the original waste LF slag.

Implications: Using waste to treat waste as a concept is a new approach that not only solves waste disposal problems but also minimizes the toxicity and the potential hazard of leaching of heavy metals. This study evaluated the feasibility of using waste ladle furnace slag generated from steel-making industries to form a cementitious matrix capable of providing an effective stabilization/solidification solution for the treatment of mercury-containing wastes. Promising results were obtained, and it clearly showed this approach is feasible, which could be a one-stone-kills-two-birds solution for mercury stabilization as well as an industrial waste disposal problem.  相似文献   
35.
Habitat corridors are important tools for maintaining connectivity in increasingly fragmented landscapes, but generally they have been considered in single‐species approaches. Corridors intended to facilitate the movement of multiple species could increase persistence of entire communities, but at the likely cost of being less efficient for any given species than a corridor intended specifically for that species. There have been few tests of the trade‐offs between single‐ and multispecies corridor approaches. We assessed single‐species and multispecies habitat corridors for 5 threatened mammal species in tropical forests of Borneo. We generated maps of the cost of movement across the landscape for each species based on the species’ local abundance as estimated through hierarchical modeling of camera‐trap data with biophysical and anthropogenic covariates. Elevation influenced local abundance of banded civets (Hemigalus derbyanus) and sun bears (Helarctos malayanus). Increased road density was associated with lower local abundance of Sunda clouded leopards (Neofelis diardi) and higher local abundance of sambar deer (Rusa unicolor). Pig‐tailed macaque (Macaca nemestrina) local abundance was lower in recently logged areas. An all‐species‐combined connectivity scenario with least‐cost paths and 1 km buffers generated total movement costs that were 27% and 23% higher for banded civets and clouded leopards, respectively, than the connectivity scenarios for those species individually. A carnivore multispecies connectivity scenario, however, increased movement cost by 2% for banded civets and clouded leopards. Likewise, an herbivore multispecies scenario provided more effective connectivity than the all‐species‐combined scenario for sambar and macaques. We suggest that multispecies habitat connectivity plans be tailored to groups of ecologically similar, disturbance‐sensitive species to maximize their effectiveness. Evaluación de la Conectividad de Terrenos Multiespecie en una Comunidad Tropical de Mamíferos  相似文献   
36.
In the early 1990s, a soil removal action was completed at a former disposal pit site located in southern Michigan. This action removed waste oil, cutting oil, and chlorinated solvents from the unsaturated zone. To contain groundwater contaminant migration at the site, a groundwater pump‐and‐treat system comprised of two extraction wells operating at a combined flow of 50 gallons per minute, carbon treatment, and a permitted effluent discharge was designed, installed, and operated for over 10 years. Groundwater monitoring for natural attenuation parameters and contaminant attenuation modeling demonstrated natural attenuation of the contaminant plume was adequate to attain site closure. As a result of incomplete contaminant source removal, a rebound of contaminants above the levels established in the remedial action plan (RAP) has occurred in the years following system shutdown and site closure. Groundwater concentrations have raised concerns regarding potential indoor air quality at adjacent residential properties constructed in the past 9 to 10 years. The only remedial option available in the original RAP is to resume groundwater pump‐and‐treat. To remediate the source area, an alternate remediation strategy using an ozone sparge system was developed. The ozone sparge remediation strategy addresses the residual saturated zone contaminants beneath the former disposal pit and reestablishes site closure requirements without resumption of the pump‐and‐treat system. A pilot study was completed successfully; and the final system design was subsequently approved by the Michigan Department of Environmental Quality. The system was installed and began operations in July 2010. As of the January 2011 monitoring event, the system has shown dramatic improvement in site contaminant concentrations. The system will continue to operate until monitoring results indicate that complete treatment has been obtained. The site will have achieved the RAP objectives when the system has been shut down and meets groundwater residential criteria for four consecutive quarters. © 2011 Wiley Periodicals, Inc.  相似文献   
37.
The southern Yucatán contains the largest expanse of seasonal tropical forests remaining in Mexico, forming an ecocline between the drier north of the peninsula and the humid Petén, Guatemala. The Calakmul Biosphere Reserve resides in the center of this region as part of the Mesoamerican Biological Corridor. The reserve's functions are examined in regard to land changes throughout the region, generated over the last 40 years by increasing settlement and the expansion and intensification of agriculture. These changes are documented from 1987/1988 to 2000, and their implications regarding the capacity of the reserve to protect the ecocline, forest habitats, and butterfly diversity are addressed. The results indicate that the current landscape matrix serves the biotic diversity of the reserve, with several looming caveats involving the loss of humid forests and the interruption of biota flow across the ecocline, and the amount and proximity of older forest patches beyond the reserve. The highly dynamic land cover changes underway in this economic frontier warrant an adaptive management approach that monitors the major changes underway in mature forest types, while the paucity of systematic ecological and environment-development studies is rectified in order to inform policy and practice.  相似文献   
38.
McRae BH  Dickson BG  Keitt TH  Shah VB 《Ecology》2008,89(10):2712-2724
Connectivity among populations and habitats is important for a wide range of ecological processes. Understanding, preserving, and restoring connectivity in complex landscapes requires connectivity models and metrics that are reliable, efficient, and process based. We introduce a new class of ecological connectivity models based in electrical circuit theory. Although they have been applied in other disciplines, circuit-theoretic connectivity models are new to ecology. They offer distinct advantages over common analytic connectivity models, including a theoretical basis in random walk theory and an ability to evaluate contributions of multiple dispersal pathways. Resistance, current, and voltage calculated across graphs or raster grids can be related to ecological processes (such as individual movement and gene flow) that occur across large population networks or landscapes. Efficient algorithms can quickly solve networks with millions of nodes, or landscapes with millions of raster cells. Here we review basic circuit theory, discuss relationships between circuit and random walk theories, and describe applications in ecology, evolution, and conservation. We provide examples of how circuit models can be used to predict movement patterns and fates of random walkers in complex landscapes and to identify important habitat patches and movement corridors for conservation planning.  相似文献   
39.
ABSTRACT: The responses of the spotfin shiner (Notropis spilopterus) and bluntnose minnow (Pimephales notatus) to intermittent chlorine discharges from a fossil fuel power plant in the New River were investigated by seine collections in the chlorinated discharge channel, and chlorine avoidances were obtained in a field laboratory at the power plant in Glen Lyn, Virginia. No fish were captured by seine during chlorination periods when the total chlorine (TCR) and free chlorine (FCR) residuals were, respectively, 0.46 and 0.27 mg/1 or higher at river water temperatures of 12 C or less. For collections made between eight-hour chlorination periods, the number of fish was reduced by approximately 50% at 0.20 and 0.06 mg/1 TCR and FCR, respectively. Significant (0.05 level) laboratory avoidances occurred at 0.10 to 0.20 mg/1 TCR (0.03 to 0.14 mg/1 FCR) for both species when exposed to increasing TCR concentrations of 0.10, 0.20, 0.30 and 0.40 mg/1. Responses varied with acclimation temperature (6, 12, 18 and 24 C) with no consisteent trends between species. When exposed to a constant TCR concentration during any one test (0.14, 0.18 and 0.26 mg/1 for the spotfin shiner, and 0.11 and 0.17 mg/1 for the bluntnose minnow), significant avoidances were observed at 0.26 and 0.17 mg/1 for each species, respectively. In all laboratory trials, occurrence or residence times decreased with increasing chlorine concentration, with residence times as high as 64.7% at 0.10 mg/1 TCR and as low as 8.3% at 0.40 mg/1 being observed.  相似文献   
40.
Although some sectors have made significant progress in learning from failure, there is currently limited consensus on how a similar transition could best be achieved in conservation and what is required to facilitate this. One of the key enabling conditions for other sectors is a widely accepted and standardized classification system for identifying and analyzing root causes of failure. We devised a comprehensive taxonomy of root causes of failure affecting conservation projects. To develop this, we solicited examples of real-life conservation efforts that were deemed to have failed in some way, identified their underlying root causes of failure, and used these to develop a generic, 3-tier taxonomy of the ways in which projects fail, at the top of which are 6 overarching cause categories that are further divided into midlevel cause categories and specific root causes. We tested the taxonomy by asking conservation practitioners to use it to classify the causes of failure for conservation efforts they had been involved in. No significant gaps or redundancies were identified during this testing phase. We then analyzed the frequency that particular root causes were encountered by projects within this test sample, which suggested that some root causes were more likely to be encountered than others and that a small number of root causes were more likely to be encountered by projects implementing particular types of conservation action. Our taxonomy could be used to improve identification, analysis, and subsequent learning from failed conservation efforts, address some of the barriers that currently limit the ability of conservation practitioners to learn from failure, and contribute to establishing an effective culture of learning from failure within conservation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号