首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12020篇
  免费   81篇
  国内免费   88篇
安全科学   306篇
废物处理   516篇
环保管理   1649篇
综合类   2506篇
基础理论   2687篇
环境理论   5篇
污染及防治   3147篇
评价与监测   737篇
社会与环境   577篇
灾害及防治   59篇
  2022年   92篇
  2021年   100篇
  2019年   71篇
  2018年   152篇
  2017年   134篇
  2016年   236篇
  2015年   176篇
  2014年   247篇
  2013年   909篇
  2012年   321篇
  2011年   449篇
  2010年   360篇
  2009年   418篇
  2008年   460篇
  2007年   526篇
  2006年   470篇
  2005年   373篇
  2004年   398篇
  2003年   398篇
  2002年   362篇
  2001年   442篇
  2000年   327篇
  1999年   212篇
  1998年   128篇
  1997年   137篇
  1996年   118篇
  1995年   166篇
  1994年   155篇
  1993年   129篇
  1992年   139篇
  1991年   160篇
  1990年   124篇
  1989年   138篇
  1988年   140篇
  1987年   122篇
  1986年   91篇
  1985年   107篇
  1984年   138篇
  1983年   137篇
  1982年   132篇
  1981年   110篇
  1980年   96篇
  1979年   120篇
  1978年   97篇
  1977年   86篇
  1976年   86篇
  1975年   95篇
  1974年   105篇
  1972年   73篇
  1965年   74篇
排序方式: 共有10000条查询结果,搜索用时 318 毫秒
491.
Climate change is altering nutrient cycling within the Arctic Ocean, having knock-on effects to Arctic ecosystems. Primary production in the Arctic is principally nitrogen-limited, particularly in the western Pacific-dominated regions where denitrification exacerbates nitrogen loss. The nutrient status of the eastern Eurasian Arctic remains under debate. In the Barents Sea, primary production has increased by 88% since 1998. To support this rapid increase in productivity, either the standing stock of nutrients has been depleted, or the external nutrient supply has increased. Atlantic water inflow, enhanced mixing, benthic nitrogen cycling, and land–ocean interaction have the potential to alter the nutrient supply through addition, dilution or removal. Here we use new datasets from the Changing Arctic Ocean program alongside historical datasets to assess how nitrate and phosphate concentrations may be changing in response to these processes. We highlight how nutrient dynamics may continue to change, why this is important for regional and international policy-making and suggest relevant research priorities for the future.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01673-0.  相似文献   
492.
Unprecedented and dramatic transformations are occurring in the Arctic in response to climate change, but academic, public, and political discourse has disproportionately focussed on the most visible and direct aspects of change, including sea ice melt, permafrost thaw, the fate of charismatic megafauna, and the expansion of fisheries. Such narratives disregard the importance of less visible and indirect processes and, in particular, miss the substantive contribution of the shelf seafloor in regulating nutrients and sequestering carbon. Here, we summarise the biogeochemical functioning of the Arctic shelf seafloor before considering how climate change and regional adjustments to human activities may alter its biogeochemical and ecological dynamics, including ecosystem function, carbon burial, or nutrient recycling. We highlight the importance of the Arctic benthic system in mitigating climatic and anthropogenic change and, with a focus on the Barents Sea, offer some observations and our perspectives on future management and policy.  相似文献   
493.
494.
495.
By mechanical-biological treatment (MBT) of residual municipal solid waste the behaviour of landfills can be significantly improved. After MBT the organic content (COD and BOD5), total organic carbon, and total nitrogen in the leachate, as well as the gas production rate, are reduced to values lower than 90% of the fresh untreated waste. The volume of the stabilized material to be disposed on landfills decreases enormously, by up to 70%. The monitoring effort for a landfill constructed under these conditions is reduced to a minimum and the stabilized material can be used in other ways, as material for reforestation, for cover material or for thermal utilization to produce energy. Environmental conditions are important in MBT, as well as waste characteristics. This paper describes the results of a pilot project of MBT performed in Rio de Janeiro, Brazil. The results have shown that this technology can be used successfully in developing countries, with economy for the society and important results for the environment.  相似文献   
496.
A laboratory-scale bioreactor was used to investigate the influence of dairy manure addition (as an inoculum and a carbon source) on the biological and thermal kinetics of the composting process of tomato plant residues-wood shavings mixture. Urea was added (as a nitrogen source) to correct the initial C:N ratio to 30:1 and the initial moisture content was also adjusted to 60%. The result of this study indicated that manure addition to the tomato residues-wood shavings mixture is a good source of macro and micronutrients required for supporting the composting microorganisms. Manure addition increased the rate of temperature increase and the duration of maximum temperature and reduced the lag and the peak time, all of which resulted in a significant reduction in the retention time. However, thermophilic temperature (> or = 40 degrees Celsius) was only achieved with 30%, 40% and 50% manure addition for 3, 7 and 9h. Total carbon reductions were in the range of 9.4-10.8% and TKN reductions were in the range of 3.4-6.0%. Neither the nitrogen nor the moisture content were limiting factors as the C:N ratio remained in the range of 26:1 to 28:1 and the moisture content remained within the optimum range of 58-61%. The maximum temperature of each mixture correlated with the reduction of total carbon, but carbon availability was a limiting factor in these experiments. In order to attain and sustain a thermophilic phase during the composting process, the addition of a readily available carbon source to the tomato should be investigated and carbon type (carbohydrates, proteins and fats) should be taken into account.  相似文献   
497.
498.
The fermentation process is an important component in the biodegradation of organic compounds in natural and contaminated systems. Comparing with terminal electron-accepting processes (TEAPs), however, research on fermentation processes has to some extent been ignored in the past decades, particularly on the persistence of fermentation process in the presence of toxic organic pollutants. Both field and laboratory studies, presented here, showed that microbial processes in a groundwater-based system exhibited a differential inhibitory response to toxicity of phenolic compounds from coal tar distillation, thus resulting in the accumulation of volatile fatty acids (VFAs) and hydrogen. This indicated that fermentation processes could be more resistant to phenol toxicity than the subsequent TEAPs such as methanogenesis and sulfate reduction, thus providing us with more options for enhancing bioremediation processes.  相似文献   
499.
Assessing the accuracy of agronomic and water quality simulation models in different soils, land-use systems, and environments provides a basis for using and improving these models. We evaluated the performance of the ADAPT model for simulating riverine nitrate-nitrogen (NO3-N) export from a 1500-km2 watershed in central Illinois, where approximately 85% of the land is used for maize-soybean production and tile drainage is common. Soil chemical properties, crop nitrogen (N) uptake coefficient, dry matter ratio, and a denitrification reduction coefficient were used as calibration parameters to optimize the fit between measured and simulated NO3-N load from the watershed for the 1989 to 1993 period. The applicability of the calibrated parameter values was tested by using these values for simulating the 1994 to 1997 period on the same watershed. Willmott's index of agreement ranged from 0.91 to 0.97 for daily, weekly, monthly, and annual comparisons of riverine nitrate N loads. Simulation accuracy generally decreased as the time interval decreased. Willmott's index for simulated crop yields ranged from 0.91 to 0.99; however, observed crop yields were used as input to the model. The partial N budget results suggested that 52 to 72 kg N ha(-1) yr(-1) accumulated in the soil, but simulated biological N fixation associated with soybeans was considerably greater than literature values for the region. Improvement of the N fixation algorithms and incorporation of mechanisms that describe soybean yield in response to environmental conditions appear to be needed to improve the performance of the model.  相似文献   
500.
Knowledge of pesticide distribution and persistence in nursery recycling pond water and sediment is critical for preventing phytotoxicity of pesticides during water reuse and to assess their impacts to the environment. In this study, sorption and degradation of four commonly used pesticides (diazinon, chlorpyrifos, chlorothalonil, and pendimethalin) in sediments from two nursery recycling ponds was investigated. Results showed that diazinon and chlorothalonil were moderately sorbed [K(OC) (soil organic carbon distribution coefficient) from 732 to 2.45 x 10(3) mL g(-1)] to the sediments, and their sorption was mainly attributable to organic matter content, whereas chlorpyrifos and pendimethalin were strongly sorbed (K(OC) > or = 7.43 x 10(3) mL g(-1)) to the sediments, and their sorption was related to both organic matter content and sediment texture. The persistence of diazinon and chlorpyrifos was moderate under aerobic conditions (half-lives = 8 to 32 d), and increased under anaerobic conditions (half-lives = 12 to 53 d). In contrast, chlorothalonil and pendimethalin were quickly degraded under aerobic conditions with half-lives < 2.8 d, and their degradation was further enhanced under anaerobic conditions (half-lives < 1.9 d). The strong sorption of chlorpyrifos and pendimethalin by the sediments suggests that the practice of recycling nursery runoff would effectively retain these compounds in the recycling pond, minimizing their offsite movement. The prolonged persistence of diazinon and chlorpyrifos, however, implies that incidental spills, such as overflows caused by storm events, may contribute significant loads of such pesticides into downstream surface water bodies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号