首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   799篇
  免费   5篇
  国内免费   1篇
安全科学   24篇
废物处理   16篇
环保管理   241篇
综合类   67篇
基础理论   152篇
污染及防治   228篇
评价与监测   58篇
社会与环境   15篇
灾害及防治   4篇
  2021年   5篇
  2020年   5篇
  2019年   5篇
  2018年   4篇
  2017年   4篇
  2016年   15篇
  2015年   7篇
  2014年   4篇
  2013年   108篇
  2012年   22篇
  2011年   26篇
  2010年   27篇
  2009年   27篇
  2008年   36篇
  2007年   37篇
  2006年   42篇
  2005年   21篇
  2004年   33篇
  2003年   29篇
  2002年   31篇
  2001年   16篇
  2000年   16篇
  1999年   9篇
  1998年   15篇
  1997年   14篇
  1996年   12篇
  1995年   14篇
  1994年   10篇
  1993年   7篇
  1992年   11篇
  1991年   13篇
  1990年   5篇
  1989年   11篇
  1988年   8篇
  1987年   10篇
  1986年   8篇
  1985年   9篇
  1984年   18篇
  1983年   17篇
  1982年   10篇
  1981年   13篇
  1980年   4篇
  1979年   14篇
  1978年   8篇
  1976年   8篇
  1975年   5篇
  1974年   4篇
  1972年   5篇
  1971年   4篇
  1970年   4篇
排序方式: 共有805条查询结果,搜索用时 15 毫秒
71.
    
Data from a study on East Lake Tohopekaliga, Florida, indicate that the seepage meter measurement method may often overestimate nutrient contributions to lakes. Nutrient loading data from this method and a method employing lakeside piezometer nutrient data and seepage meter flows were not comparable. Seepage nutrient loading from the meter and piezometer methods comprised 39 and 18 percent of the nitrogen budget and 38 and 9 percent of the phosphorus budget, respectively, for East Lake Tohopekaliga. In terms of water, groundwater seepage accounted for only 14 percent of the total input to the lake. It is felt that some of the past studies using the seepage meter method to estimate nutrient loading may be in error due to reasons related to the enclosure of lake sediments by the meter and the accompanying anaerobic conditions which quickly result.  相似文献   
72.
ABSTRACT: Stream water chemistry was monitored on two watersheds on the Fernow Experimental Forest in north-central West Virginia to determine the effects of forest fertilization on annual nutrient exports. Ammonium nitrate and triple superphosphate were applied simultaneously at rates of 336 kg ha?1 N and 224 kg ha?1 P2O5, respectively, which are similar to rates used in commercial forest operations. The treatment significantly increased outputs of several ions. Annual outputs of nitrate N increased as much as 18 times over pretreatment levels, and calcium and magnesium increased as much as three times over pretreatment levels the first year after fertilization. Outputs for these nutrients were elevated for all three post-treatment years. Although nitrate N increased significantly, only about 20 percent of the applied fertilizer was accounted for in stream water exports. Outputs of phosphate P declined following fertilization, probably because the watersheds are phosphorus deficient, but by the third year, they slightly exceeded predicted values. Estimated nutrient losses to deep seepage were substantial, especially on the leakier south-facing catchmeat, on which some nutrient losses were equal to or greater than those in stream water. When the nutrient exports associated with both stream discharge and ground water recharge were combined, the percentages of applied N that were lost were similar on the two watersheds, averaging 27.5 percent. Less than 1 percent of the applied P was lost from either watershed in the combination of streamflow and deep seepage.  相似文献   
73.

Guest Editorial

A view from the countryside  相似文献   
74.
In Salah Gas Project in Algeria has been injecting 0.5–1 million tonnes CO2 per year over the past 5 years into a water-filled strata at a depth of about 1800–1900 m. Unlike most CO2 storage sites, the permeability of the storage formation is relatively low and comparatively thin with a thickness of about 20 m. To ensure adequate CO2 flow-rates across the low-permeability sand-face, the In Salah Gas Project decided to use long-reach (about 1–1.5 km) horizontal injection wells. In an ongoing research project we use field data and coupled reservoir-geomechanical numerical modeling to assess the effectiveness of this approach and to investigate monitoring techniques to evaluate the performance of a CO2 injection operation in relatively low-permeability formations. Among the field data used are ground surface deformations evaluated from recently acquired satellite-based inferrometry (InSAR). The InSAR data shows a surface uplift on the order of 5 mm per year above active CO2 injection wells and the uplift pattern extends several km from the injection wells. In this paper we use the observed surface uplift to constrain our coupled reservoir-geomechanical model and conduct sensitivity studies to investigate potential causes and mechanisms of the observed uplift. The results of our analysis indicate that most of the observed uplift magnitude can be explained by pressure-induced, poro-elastic expansion of the 20-m-thick injection zone, but there could also be a significant contribution from pressure-induced deformations within a 100-m-thick zone of shaly sands immediately above the injection zone.  相似文献   
75.
76.
During the 21st century, climate-driven changes in fire regimes will be a key agent of change in forests of the U.S. Pacific Northwest (PNW). Understanding the response of forest carbon (C) dynamics to increases in fire will help quantify limits on the contribution of forest C storage to climate change mitigation and prioritize forest types for monitoring C storage and fire management to minimize C loss. In this study, we used projections of 21st century area burned to explore the consequences of changes in fire regimes on C dynamics in forests of Washington State. We used a novel empirical approach that takes advantage of chronosequences of C pools and fluxes and statistical properties of fire regimes to explore the effects of shifting age class distributions on C dynamics. Forests of the western Cascades are projected to be more sensitive to climate-driven increases in fire, and thus projected changes in C dynamics, than forests of the eastern Cascades. In the western Cascades, mean live biomass C is projected to decrease by 24-37%, and coarse woody debris (CWD) biomass C by 15-25% for the 2040s. Loss of live biomass C is projected to be lower for forests of the eastern Cascades and Okanogan Highlands (17-26%), and CWD biomass is projected to increase. Landscape mean net primary productivity is projected to increase in wet low-elevation forests of the western Cascades, but decrease elsewhere. These forests, and moist forests of the Okanogan Highlands, are projected to have the greatest percentage increases in consumption of live biomass. Percentage increases in consumption of CWD biomass are greater than 50% for all regions and up to four times greater than increases in consumption of live biomass. Carbon sequestration in PNW forests will be highly sensitive to increases in fire, suggesting a cautious approach to managing these forests for C sequestration to mitigate anthropogenic CO2 emissions.  相似文献   
77.
Three different mass-transfer expressions are employed within the Model of Aerosol, Gas, and Interfacial Chemistry (MAGIC) to study gas-phase molecular chlorine and bromine production from NaCl and NaBr aerosols, respectively. Simulations of chamber experiments are performed in which NaCl aerosols react with gas-phase ozone in the presence of UV light, in order to identify the importance of the Knudsen number and mass-transfer expression in systems with varying contributions from gas-phase, aqueous-phase, and interfacial chemistry. In the case of NaBr aerosols, simulations are performed of both dark and photolytic conditions. A range of Knudsen numbers spanning the continuum, transition and free-molecular regimes is studied. Particle size is varied over three orders of magnitude, and particle concentration is changed to keep either (a) total aerosol volume or (b) total aerosol surface area constant. When total aerosol volume is constant, the total amount of surface area available for interfacial reaction increases linearly with Knudsen number. Consequently peak gas-phase Cl2 and Br2 concentrations increase by two orders of magnitude from the continuum regime to the free-molecular regime. When total aerosol surface area is constant, total aerosol volume is inversely proportional to Knudsen number, with lesser volume being available at higher Knudsen numbers. Consequently Cl? depletion in the kinetic regime leads to most gas-phase Cl2 being produced in the transition regime. Gas-phase Br2 concentration trends are determined by aqueous-phase reaction mechanisms, leading to a monotonic decrease in production with Knudsen number. At all Knudsen numbers, more gas-phase bromine is produced in the photolytic case than in the dark case, the difference being significant in the transition regime. Results of this study suggest that halogen production is insensitive to the mass-transfer expression used in the simulations.  相似文献   
78.
A kinetically based gas-particle partitioning box model is used to highlight the importance of parameter representation in the prediction of secondary organic aerosol (SOA) formation following the photo-oxidation of toluene. The model is initialized using experimental data from York University's indoor smog chamber and provides a prediction of the total aerosol yield and speciation. A series of model sensitivity experiments were performed to study the aerosol speciation and mass prediction under high NOx conditions (VOC/NOx = 0.2). Sensitivity experiments indicate vapour pressure estimation to be a large area of weakness in predicting aerosol mass, creating an average total error range of 70 μg m?3 (range of 5–145 μg m?3), using two different estimation methods. Aerosol speciation proved relatively insensitive to changes in vapour pressure. One species, 3-methyl-6-nitro-catechol, dominated the aerosol phase regardless of the vapour pressure parameterization used and comprised 73–88% of the aerosol by mass. The dominance is associated with the large concentration of 3-methyl-6-nitro-catechol in the gas-phase. The high NOx initial conditions of this study suggests that the predominance of 3-methyl-6-nitro-catechol likely results from the cresol-forming branch in the Master Chemical Mechanism taking a significant role in secondary organic aerosol formation under high NOx conditions. Further research into the yields and speciation leading to this reaction product is recommended.  相似文献   
79.
We present a study of the seasonal and diurnal variability of carbon monoxide and selected volatile organic compounds in the Los Angeles area. Measurements were made during four different nine-day field campaigns in April/May, September, and November, 2007, and February, 2008, at the Mt. Wilson sampling site, which is located at an elevation of approximately 1700 m in the San Gabriel Mountains overlooking Pasadena and the Los Angeles basin. The results were used to characterize the Mt. Wilson site as a representative location for monitoring integrated Los Angeles basin emissions, and, by reference to carbon monoxide emissions, to estimate average annual emissions. The considerable seasonal variability of many hydrocarbons, in both their measured mixing ratios and their relationship to carbon monoxide, was indicative of variable source strengths. Most interestingly, perturbation of C4 hydrocarbon ratios suggested an enhanced role for chlorine chemistry during the month of September, likely as the result of Los Angeles’ coastal location. Such coastal influence was confirmed by observations of enhanced mixing ratios of marine halocarbons, as well as air mass back trajectories.  相似文献   
80.
The effect of cadmium on sediment processing by laboratory-cultured specimens of Capitella sp I and Capitella sp B was investigated. Specimens were exposed to 0, 60, 90 and 140 microg Cd g(-1) dry weight sediment for a 10 day period (two census days) to observe effects of cadmium on their feeding activity. Under unstressed conditions, Capitella sp I specimens were larger, had higher biomass and produced more fecal pellets than Capitella sp B. Cadmium concentrations had no effect on pellet production and body mass of the studied populations. However, cadmium exposure time significantly affected Capitella sp B pellet production and body mass of both populations following different trends: after 10 days of exposure, the average processed sediment per unit worm mass decreased in Capitella sp I but increased in Capitella sp B. The latter population did not reduce its feeding activity in the presence of cadmium maybe related to the fact that it is derived from a highly polluted environment. This study has shown an unimpaired response of Capitella sp I and Capitella sp B to cadmium in their sediment processing activity, which indicates the potential importance of this species complex in the trophic transfer of metals from sediments to other marine organisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号