首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33290篇
  免费   388篇
  国内免费   236篇
安全科学   907篇
废物处理   1356篇
环保管理   4559篇
综合类   5896篇
基础理论   8989篇
环境理论   18篇
污染及防治   8257篇
评价与监测   2046篇
社会与环境   1644篇
灾害及防治   242篇
  2022年   234篇
  2021年   239篇
  2019年   242篇
  2018年   396篇
  2017年   440篇
  2016年   674篇
  2015年   535篇
  2014年   765篇
  2013年   2683篇
  2012年   970篇
  2011年   1331篇
  2010年   1086篇
  2009年   1136篇
  2008年   1304篇
  2007年   1396篇
  2006年   1285篇
  2005年   1058篇
  2004年   1020篇
  2003年   1019篇
  2002年   946篇
  2001年   1168篇
  2000年   898篇
  1999年   532篇
  1998年   417篇
  1997年   432篇
  1996年   440篇
  1995年   493篇
  1994年   464篇
  1993年   447篇
  1992年   441篇
  1991年   431篇
  1990年   440篇
  1989年   408篇
  1988年   372篇
  1987年   347篇
  1986年   346篇
  1985年   328篇
  1984年   369篇
  1983年   354篇
  1982年   379篇
  1981年   348篇
  1980年   304篇
  1979年   321篇
  1978年   267篇
  1977年   248篇
  1975年   199篇
  1974年   244篇
  1973年   230篇
  1972年   231篇
  1971年   214篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
921.
Chemical methods and phytoremediation of soil contaminated with heavy metals   总被引:43,自引:0,他引:43  
Chen HM  Zheng CR  Tu C  Shen ZG 《Chemosphere》2000,41(1-2):229-234
The effects of chemical amendments (calcium carbonate (CC), steel sludge (SS) and furnace slag (FS)) on the growth and uptake of cadmium (Cd) by wetland rice, Chinese cabbage and wheat grown in a red soil contaminated with Cd were investigated using a pot experiment. The phytoremediation of heavy metal contaminated soil with vetiver grass was also studied in a field plot experiment. Results showed that treatments with CC, SS and FS decreased Cd uptake by wetland rice, Chinese cabbage and wheat by 23-95% compared with the unamended control. Among the three amendments, FS was the most efficient at suppressing Cd uptake by the plants, probably due to its higher content of available silicon (Si). The concentrations of zinc (Zn), lead (Pb) and Cd in the shoots of vetiver grass were 42-67%, 500-1200% and 120-260% higher in contaminated plots than in control, respectively. Cadmium accumulation by vetiver shoots was 218 g Cd/ha at a soil Cd concentration of 0.33 mg Cd/kg. It is suggested that heavy metal-contaminated soil could be remediated with a combination of chemical treatments and plants.  相似文献   
922.
923.
Bulk (wet and dry) precipitation and surface water sampling was undertaken in the main plain of central Macedonia in Northern Greece. Fourteen polycyclic aromatic hydrocarbons (PAHs) included in the US EPA's priority pollutant list were analysed. The concentrations determined in bulk precipitation were in general within the range of values worldwide reported. Concentrations were highest in the cold months. Deposition fluxes of PAHs were of the same order of magnitude as reported data. The greatest values were found when high concentrations of PAHs in precipitation coincided with large precipitation amounts. The concentrations of PAHs in surface waters (main rivers, tributaries, ditches, etc) were in general lower than those in bulk precipitation, and among the lowest reported for European rivers, excepting Np and Ph. Bulk deposition and domestic effluents are suggested as being the main PAH sources into surface waters.  相似文献   
924.
An experimental study of the selective non-catalytic reduction (SNCR) process was carried out to determine the efficiency of NOx removal and NH3 mass balance, the NOx reducing reagent used. Experimental tests were conducted on a full-scale SNCR system installed in a hospital waste incineration plant. Anhydrous NH3 was injected at the boiler entrance for NOx removal. Ammonia was analyzed after each flue-gas treatment unit in order to establish its mass balance and NH3 slip in the stack gas was monitored as well. The effective fraction of NH3 for the thermal NOx reduction was calculated from measured values of injected and residual NH3. Results show that a NOx reduction efficiency in the range of 46.7-76.7% is possible at a NH3/NO molar ratio of 0.9-1.5. The fraction of NH3 used in NOx removal was found to decrease with rising NH3/NO molar ratio. The NH3 slip in the stack gas was very low, below permitted limits, even at the higher NH3 dosages used. No direct correlation was found between the NH3/NO molar ratio and the NH3 slip in the stack gas since the major part of the residual NH3 was converted into ammonium salts in the dry scrubbing reactor and subsequently collected in the fabric filter. Moreover, another fraction of NH3 was dissolved in the scrubbing liquor.  相似文献   
925.
Mechanisms of lead, copper, and zinc retention by phosphate rock   总被引:31,自引:0,他引:31  
The solid-liquid interface reaction between phosphate rock (PR) and metals (Pb, Cu, and Zn) was studied. Phosphate rock has the highest affinity for Pb, followed by Cu and Zn, with sorption capacities of 138, 114, and 83.2 mmol/kg PR, respectively. In the Pb-Cu-Zn ternary system, competitive metal sorption occurred with sorption capacity reduction of 15.2%, 48.3%, and 75.6% for Pb, Cu, and Zn, respectively compared to the mono-metal systems. A fractional factorial design showed the interfering effect in the order of Pb>Cu>Zn. Desorption of Cu and Zn was sensitive to pH change, increasing with pH decline, whereas Pb desorption was decreased with a strongly acidic TCLP extracting solution (pH = 2.93). The greatest stability of Pb retention by PR can be attributed to the formation of insoluble fluoropyromorphite [Pb(10)(PO(4))(6)F(2)], which was primarily responsible for Pb immobilization (up to 78.3%), with less contribution from the surface adsorption or complexation (21.7%), compared to 74.5% for Cu and 95.7% for Zn. Solution pH reduction during metal retention and flow calorimetry analysis both supported the hypothesis of retention of Pb, Cu, and Zn by surface adsorption or complexation. Flow calorimetry indicated that Pb and Cu adsorption onto PR was exothermic, while Zn sorption was endothermic. Our research demonstrated that PR can effectively remove Pb from solutions, even in the presence of other heavy metals (e.g. Cu, Zn).  相似文献   
926.
927.
To improve phytoremediation processes, multiple techniques that comprise different aspects of contaminant removal from soils have been combined. Using creosote as a test contaminant, a multi-process phytoremediation system composed of physical (volatilization), photochemical (photooxidation) and microbial remediation, and phytoremediation (plant-assisted remediation) processes was developed. The techniques applied to realize these processes were land-farming (aeration and light exposure), introduction of contaminant degrading bacteria, plant growth promoting rhizobacteria (PGPR), and plant growth of contaminant-tolerant tall fescue (Festuca arundinacea). Over a 4-month period, the average efficiency of removal of 16 priority PAHs by the multi-process remediation system was twice that of land-farming, 50% more than bioremediation alone, and 45% more than phytoremediation by itself. Importantly, the multi-process system was capable of removing most of the highly hydrophobic, soil-bound PAHs from soil. The key elements for successful phytoremediation were the use of plant species that have the ability to proliferate in the presence of high levels of contaminants and strains of PGPR that increase plant tolerance to contaminants and accelerate plant growth in heavily contaminated soils. The synergistic use of these approaches resulted in rapid and massive biomass accumulation of plant tissue in contaminated soil, putatively providing more active metabolic processes, leading to more rapid and more complete removal of PAHs.  相似文献   
928.
929.
The objective of this study was to assess the removal efficiencies of secondary wastewater treatment processes for compounds causing endocrine disrupting activity. The study used bioassays and chemical measurements, such as gas chromatography with mass spectrometry and enzyme immunosorbent assays. A total of seven full-scale water reclamation facilities using different unit operations and two pilot-scale membrane bioreactors were examined. Findings of this study imply that estrogenic disrupting activity in primary effluent is mainly caused by two steroidal hormones (17beta-estradiol and estriol) and, to a lesser extent, by synthetic chemicals, such as bisphenol A, 4-nonylphenol, and 4-tert-octylphenol. During secondary treatment, steroidal hormones were removed to a higher degree than nonylphenol and bisphenol A. The total estrogenic activity was removed by an average of 96%. The remaining concentrations of targeted steroids in secondary effluents, except for estriol, still had the potential to elicit a positive response in the human breast cell cancer assay. For the majority of facilities, the remaining activity was likely attributed to residual concentrations of two steroidal hormones (17beta-estradiol and estriol).  相似文献   
930.
Ecological science contributes to solving a broad range of environmental problems. However, lack of ecological literacy in practice often limits application of this knowledge. In this paper, we highlight a critical but often overlooked demand on ecological literacy: to enable professionals of various careers to apply scientific knowledge when faced with environmental problems. Current university courses on ecology often fail to persuade students that ecological science provides important tools for environmental problem solving. We propose problem-based learning to improve the understanding of ecological science and its usefulness for real-world environmental issues that professionals in careers as diverse as engineering, public health, architecture, social sciences, or management will address. Courses should set clear learning objectives for cognitive skills they expect students to acquire. Thus, professionals in different fields will be enabled to improve environmental decision-making processes and to participate effectively in multidisciplinary work groups charged with tackling environmental issues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号