排序方式: 共有76条查询结果,搜索用时 15 毫秒
71.
The TurfPQ model was used to simulate the runoff of 15 pesticides commonly applied to creeping bentgrass (Agrostis stolonifera L.) fairways and greens on golf courses in the northeastern USA. Simulations produced 100-yr daily records of water runoff, pesticide runoff, and pesticide concentration in runoff for three locations: Boston, MA, Philadelphia, PA, and Rochester, NY. Results were summarized as annual and monthly means and annual maximum daily loads (AMDLs) corresponding to 10- and 20-yr return periods. Mean annual pesticide runoff loads did not exceed 3% of annual applications for any pesticide or site, and most losses were substantially less than 1% of application. However, annual or monthly mean concentrations of chlorothalonil, iprodione, and PCNB in fairway runoff often exceeded concentrations that result in 50% mortality of the affected species (LC50) for aquatic organisms. Concentrations of azoxystrobin, bensulide, cyfluthrin, and trichlorfon in extreme (1 in 10 yr or 1 in 20 yr) events often approached or exceeded LC50 levels. Concentrations of halofenozide, mancozeb, MCPP, oxadiazon, propiconazole, thiophanate-methyl, triadimefon, and trinexapac-ethyl were well below LC50 levels, and turf runoff of these chemicals does not appear to be hazardous to aquatic life in surface waters. 相似文献
72.
Accumulation of cadmium in the edible parts of six vegetable species grown in Cd-contaminated soils 总被引:6,自引:0,他引:6
Species difference in Cd accumulation is important for selection of agronomic technologies aimed at producing low-Cd vegetables. Six vegetable species (Chinese leek, pakchoi, carrot, radish, tomato and cucumber) were grown in pot and field experiments to study the accumulation of Cd under different conditions. In the field trial (Cd 2.55 mg kg(-1)), Cd concentrations in the edible parts ranged from 0.01 to 0.1 mg kg(-1) and were below the permissible limits (0.2 mg kg(-1) for pakchoi and leek; 0.1 mg kg(-1) for carrot and radish; 0.05 mg kg(-1) for cucumber and tomato), but exceeded the limit in pakchoi, Chinese leek, carrot and tomato at a Cd addition level of 2.0 mg kg(-1). Plant Cd concentrations increased linearly with the increasing concentration of Cd added to the soil, with the slope of the regression lines varying by 28-fold among the six species. The bioconcentration factor (BCF) varied substantially, and was much higher in the pot experiment than in the field trial. It is concluded that the vegetable species differed markedly in the Cd accumulation and species performed consistently under different growth conditions. 相似文献
73.
Photocatalytic oxidation of arsenite and simultaneous removal of the generated arsenate from aqueous solution were investigated. The whole process was performed using an adsorbent developed by loading iron oxide and TiO2 on municipal solid waste melted slag. The loading was carried out through chemical reactions and high-temperature process. In the removal process, arsenite was first oxidized to arsenate, and then was removed by adsorption. The oxidation of arsenite was rapid, but the adsorption of the generated arsenate was slow. A concentration of 100 mg l(-1) arsenite could be entirely oxidized to arsenate within 3 h in the presence of the adsorbent and under UV-light irradiation, but the equilibrium adsorption of the generated arsenate needed 10 h. Arsenite could also be oxidized to arsenate only by UV-light, but the reaction rate was approximately 1/3 of that of the photocatalyzed reaction. Both acidic and alkaline conditions were favorable for the oxidation reaction, and the optimum pH value for the oxidation and adsorption was proposed to be around 3. To oxidize and remove original 20 mg l(-1) or 50 mg l(-1) arsenite from aqueous solution, the necessary adsorbent amount was 2 g l(-1) or 5 g l(-1), respectively. Furthermore, the surface properties of the adsorbent were examined and the oxidation mechanism of arsenite was discussed. It is believed that the adsorbent developed in this study is efficient, cost-effective and environment-friendly for application in arsenic-contaminated wastewater treatment. 相似文献
74.
In order to evaluate sediment toxicity, a mathematical algorithm was developed to compute the toxicity of multiple component mixtures acting in an additive manner. A statistical approach was devised to determine the presence of potential interactive effects among mixture components. The algorithm uses three kinds of data to obtain an integrative approach to sediment toxicity assessment: Microtox toxicity data (EC50 values), sediment pollutant concentration measurements, and sequential extraction (SEQ) data to investigate metal partitioning. To simplify the analysis of complex mixtures using a prioritization scheme based on intrinsic toxicity and relative abundance, a toxicity index (TI) was employed as an indicator of adverse ecological impact. In general, the ranking of contaminants using the TI approach was found to be most efficient in reducing computational time, and concentrations using bioavailability data from SEQ was found to be the best theoretical predictor of the experimental mixture toxicity value. Only a few pollutants that were present at the greatest abundance were needed to provide a good approximation of the calculated EC50 found when all components were included. Not only does this substantially reduce the computational time needed to determine the EC50, it could in some cases dramatically reduce the pollutant monitoring effort required to track toxicity effectively. This approach would have substantial implications for both risk assessment and for remediation strategies, making them more efficient by focusing on the priority pollutants identified. 相似文献
75.
Urinary biomarkers and low-level environmental benzene concentration: assessing occupational and general exposure 总被引:1,自引:0,他引:1
The categories of urban workers undergoing prolonged exposure to gasoline due to vehicle emissions, evaporation and traffic fumes are considered occupationally exposed to benzene, even if at low concentrations. The aim of this study was to evaluate the specificity of unmetabolized benzene excreted in urine (UBz) and S-phenylmercapturic acid (SPMA) as biomarkers of exposure to very low levels of benzene, and to study the impact of putative individual confounders like smoking and alcohol habits, co-exposure to other toxicants and body mass index on the exposure assessment. Environmental and biological monitoring of exposure to benzene were performed in 114 Urban Policemen. The mean value of UBz in non-smokers was significantly lower than in either groups of light to moderate smokers and heavy smokers (0.24, 1.82 and 2.82 microg L(-1), respectively). On the contrary, SPMA values did not discriminate exposure resulting from smoking habits. Moreover, the concentration of UBz in non-smokers appears to be correlated with environmental benzene concentration (BenzA) (R(2)=0.13, beta=0.37, p=0.002). On the other hand, no significant correlation was found between SPMA concentration (corrected for creatinine excretion and log transformed, LogSPMA) and LogBenzA (R(2)=0.003, beta=0.05, p=0.6). Our findings reinforce previous research on the use of unmetabolized urinary benzene as a specific and sensitive biomarker of low-level exposure to benzene and confirm that smoking habits strongly influence the excretion of UBz. 相似文献
76.
This work describes a rapid and sensitive solid-phase microextraction (SPME) method for the isolation and analysis of methyl tert-butyl ether in water samples. Methyl tert-butyl ether was extracted from aqueous solutions using SPME fibre coated with Divinylbenzene/Carboxen/polydimethylsiloxane (30 microm film thickness) and analysed by GC-MS with a Hewlett Packard 6890/5973 system equipped with a capillary column coated with Vocol (30 m x 0.25 mm, 1.5 microm film thickness). Extraction parameters and chromatographic separation conditions were optimised. The developed method showed good analytical performance in terms of precision (RSD between 2% and 8%) and accuracy (mean recovery from 96% to 104%) with a detection limit of 14 ppt. Finally the method was applied to surface, tap and commercial mineral water samples, as well as snow samples collected along a busy road of Bologna town area. The median concentration of methyl tert-butyl ether in all these samples (0.05-0.4 ppb) was well below the maximum aqueous contamination levels in water adopted in the United States (13 ppb). 相似文献