全文获取类型
收费全文 | 9945篇 |
免费 | 4篇 |
国内免费 | 1篇 |
专业分类
安全科学 | 17篇 |
废物处理 | 777篇 |
环保管理 | 1279篇 |
综合类 | 973篇 |
基础理论 | 3165篇 |
污染及防治 | 1785篇 |
评价与监测 | 1020篇 |
社会与环境 | 921篇 |
灾害及防治 | 13篇 |
出版年
2023年 | 5篇 |
2022年 | 3篇 |
2021年 | 5篇 |
2020年 | 2篇 |
2019年 | 7篇 |
2018年 | 1477篇 |
2017年 | 1374篇 |
2016年 | 1205篇 |
2015年 | 127篇 |
2014年 | 22篇 |
2013年 | 32篇 |
2012年 | 475篇 |
2011年 | 1348篇 |
2010年 | 702篇 |
2009年 | 612篇 |
2008年 | 895篇 |
2007年 | 1238篇 |
2006年 | 14篇 |
2005年 | 33篇 |
2004年 | 44篇 |
2003年 | 72篇 |
2002年 | 102篇 |
2001年 | 28篇 |
2000年 | 19篇 |
1999年 | 4篇 |
1998年 | 12篇 |
1997年 | 5篇 |
1996年 | 3篇 |
1995年 | 4篇 |
1994年 | 7篇 |
1993年 | 2篇 |
1992年 | 5篇 |
1991年 | 9篇 |
1990年 | 4篇 |
1989年 | 4篇 |
1987年 | 3篇 |
1986年 | 1篇 |
1985年 | 3篇 |
1984年 | 14篇 |
1983年 | 8篇 |
1982年 | 4篇 |
1980年 | 3篇 |
1979年 | 3篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1975年 | 2篇 |
1972年 | 2篇 |
1970年 | 1篇 |
1958年 | 1篇 |
1935年 | 2篇 |
排序方式: 共有9950条查询结果,搜索用时 15 毫秒
571.
Misbah Sultan 《Environmental Chemistry Letters》2017,15(2):347-366
Synthetic organic dyes are extensively used in consumer products from textile to pharmaceuticals. A large amount of organic dyes is ultimately discharged as effluent into water bodies, thus posing a serious threat to environment and life. Therefore, removal of dyes from water bodies is needed. To address this problem, various synthetic and natural materials have been used to adsorb dyes. Here, we review the application of polyurethane for removal of organic dyes. First, we review the application of simple and modified polyurethane as efficient and economic adsorbents for dyes. Secondly, we review the polyurethane-based membranes for separation and adsorption of various dyes. Thirdly, we describe polyurethane composites with improved efficiency of dyes removal. Finally, we review the bioremediation of dyes where polyurethane has been proven as an excellent inert support. 相似文献
572.
Small body size is generally correlated with r‐selected life‐history traits, including early maturation, short‐generation times, and rapid growth rates, that result in high population turnover and a reduced risk of extinction. Unlike other classes of vertebrates, however, small freshwater fishes appear to have an equal or greater risk of extinction than large fishes. We explored whether particular traits explain the International Union for Conservation of Nature (IUCN) Red List conservation status of small‐bodied freshwater fishes from 4 temperate river basins: Murray‐Darling, Australia; Danube, Europe; Mississippi‐Missouri, North America; and the Rio Grande, North America. Twenty‐three ecological and life‐history traits were collated for all 171 freshwater fishes of ≤120 mm total length. We used generalized linear mixed‐effects models to assess which combination of the 23 traits best explained whether a species was threatened or not threatened. We used the best models to predict the probability of 29 unclassified species being listed as threatened. With and without controlling for phylogeny at the family level, small body size—among small‐bodied species—was the most influential trait correlated with threatened species listings. The k‐folds cross‐validation demonstrated that body size and a random effect structure that included family predicted the threat status with an accuracy of 78% (SE 0.5). We identified 10 species likely to be threatened that are not listed as such on the IUCN Red List. Small body size is not a trait that provides universal resistance to extinction, particularly for vertebrates inhabiting environments affected by extreme habitat loss and fragmentation. We hypothesize that this is because small‐bodied species have smaller home ranges, lower dispersal capabilities, and heightened ecological specialization relative to larger vertebrates. Trait data and further model development are needed to predict the IUCN conservation status of the over 11,000 unclassified freshwater fishes, especially those under threat from proposed dam construction in the world's most biodiverse river basins. 相似文献
573.
Shasha Jiang Tuan A. H. Nguyen Victor Rudolph Hong Yang Dongke Zhang Yong Sik Ok Longbin Huang 《Environmental geochemistry and health》2017,39(2):403-415
A wide range of waste biomass/waste wood feedstocks abundantly available at mine sites provide the opportunity to produce biochars for cost-effective improvement of mine tailings and contaminated land at metal mines. In the present study, soft- and hardwood biochars derived from pine and jarrah woods at high temperature (700 °C) were characterized for their physiochemical properties including chemical components, electrical conductivity, pH, zeta potential, cation-exchange capacity (CEC), alkalinity, BET surface area and surface morphology. Evaluating and comparing these characteristics with available data from the literature have affirmed the strong dictation of precursor type on the physiochemical properties of the biochars. The pine and jarrah wood feedstocks are mainly different in their proportions of cellulose, hemicellulose and lignin, resulting in biochars with heterogeneous physiochemical properties. The hardwood jarrah biochar exhibits much higher microporosity, alkalinity and electrostatic capacity than the softwood pine. Correlation analysis and principal component analysis also show a good correlation between CEC–BET–alkalinity, and alkalinity–ash content. These comprehensive characterization and analysis results on biochars’ properties from feedstocks of hardwood (from forest land clearance at mine construction) and waste pine wood (from mining operations) will provide a good guide for tailoring biochar functionalities for remediating metal mine tailings. The relatively inert high-temperature biochars can be stored for a long term at mine closure after decades of operations. 相似文献
574.
Biochar physicochemical parameters as a result of feedstock material and pyrolysis temperature: predictable for the fate of biochar in soil? 总被引:1,自引:0,他引:1
575.
The evolution of pollution profile and health risk assessment for three groups SVOCs pollutants along with Beijiang River,China 总被引:1,自引:0,他引:1
Jiao Tang Taicheng An Jukun Xiong Guiying Li 《Environmental geochemistry and health》2017,39(6):1487-1499
Three important groups of semi-volatile organic compounds (SVOCs), polycyclic aromatic hydrocarbons (PAHs), organic chlorinated pesticides (OCPs) and phthalate esters (PAEs), were produced by various human activities and entered the water body. In this study, the pollution profiles of three species including 16 PAHs, 20 OCPs and 15 PAEs in water along the Beijiang River, China were investigated. The concentrations of Σ16PAHs in the dissolved and particulate phases were obtained as 69–1.5 × 102 ng L?1 and 2.3 × 103–8.6 × 104 ng g?1, respectively. The levels of Σ20OCPs were 23–66 ng L?1 (dissolved phase) and 19–1.7 × 103 ng g?1 (particulate phase). Nevertheless, higher levels of PAEs were found both in the dissolved and particulate phases due to abuse use of plastic products. Furthermore, non-cancer and cancer risks caused by these SVOCs through the ingestion absorption and dermal absorption were also assessed. There was no non-cancer risk existed through two kinds of exposure of them at current levels, whereas certain cancer risk existed through dermal absorption of PAHs in the particulate phase in some sampling sites. The results will show scientific insights into the evaluation of the status of combined pollution in river basins, and the determination of strategies for incident control and pollutant remediation. 相似文献
576.
Alan E. Garrido William H. J. Strosnider Robin Taylor Wilson Janette Condori Robert W. Nairn 《Environmental geochemistry and health》2017,39(3):681-700
This study assessed metals in irrigation water, soil and potato crops impacted by mining discharges, as well as potential human health risk in the high desert near the historic mining center of Potosí, Bolivia. Metal concentrations were compared with international concentration limit guidelines. In addition, an ingested average daily dose and minimum risk level were used to determine the hazard quotient from potato consumption for adults and children. Irrigation water maximum concentrations of Cd, Pb and Zn in mining-impacted sites were elevated 20- to 1100-fold above international concentration limit guidelines. Agricultural soils contained total metal concentrations of As, Cd, Pb and Zn that exceeded concentration limits in agricultural soil guidelines by 22-, 9-, 3- and 12-fold, respectively. Potato tubers in mining-impacted sites had maximum concentrations of As, Cd, Pb and Zn that exceeded concentration limits in commercially sold vegetables by 9-, 10-, 16- and fourfold, respectively. Using conservative assumptions, hazard quotients (HQ) for potatoes alone were elevated for As, Cd and Pb among children (range 1.1–71.8), in nearly all of the mining-impacted areas; and for As and Cd among adults (range 1.2–34.2) in nearly all of the mining-impacted areas. Only one mining-impacted area had a Pb adult HQ for potatoes above 1 for adults. Toxic trace elements in a major regional dietary staple may be a greater concern than previously appreciated. Considering the multitude of other metal exposure routes in this region, it is likely that total HQ values for these metals may be substantially higher than our estimates. 相似文献
577.
Santosh Kumar Sarkar Priyanka Mondal Jayanta Kumar Biswas Eilhann E. Kwon Yong Sik Ok Jörg Rinklebe 《Environmental geochemistry and health》2017,39(6):1245-1258
Our objective was to evaluate distribution and accumulation of trace elements (TEs) in surface sediments along the Hooghly (Ganges) River Estuary, India, and to assess the potential risk with view to human health. The TE concentrations (mg kg?1 dry weight) exhibited a wide range in the following order: Al (31.801 ± 15.943) > Fe (23.337 ± 7584) > Mn (461 ± 147) > S (381 ± 235) > Zn (54 ± 18) > V (43 ± 14) > Cr (39 ± 15) > As (34 ± 15) > Cu (27 ± 11) > Ni (24 ± 9) > Se (17 ± 8) > Co (11 ± 3) > Mo (10 ± 2) > Hg (0.02 ± 0.01). Clay, silt, iron, manganese and sulphur were important for the accumulation of TE in the sediments as confirmed by factor analysis and Pearson correlation. The accumulation and dispersal of TEs were most likely to be governed by both tide-induced processes and anthropogenic inputs from point and non-point sources. Enrichment factor analysis and geoaccumulation index revealed serious contamination of the sediments with Se and As, while comparing the consensus-based sediment quality guidelines (SQGs), adverse biological effects to benthic fauna might be caused by As, Cu, Ni and Cr. This investigation may serve as a model study and recommends continuous monitoring of As, Se, Cu, Ni and Cr to ascertain that SQGs with respect to acceptable levels of TEs to safeguard geochemical health and ecology in the vicinity of this estuary. 相似文献
578.
Si-Yu Zhang Paul N. Williams Jinming Luo Yong-Guan Zhu 《Frontiers of Environmental Science & Engineering》2017,11(1):1
Arsenic (As) is a pervasive environmental toxin and carcinogenic metalloid. It ranks at the top of the US priority List of Hazardous Substances and causes worldwide human health problems. Wetlands, including natural and artificial ecosystems (i.e. paddy soils) are highly susceptible to As enrichment; acting not only as repositories for water but a host of other elemental/chemical moieties. While macroscale processes (physical and geological) supply As to wetlands, it is the micro-scale biogeochemistry that regulates the fluxes of As and other trace elements from the semi-terrestrial to neighboring plant/aquatic/atmospheric compartments. Among these fine-scale events, microbial mediated As biotransformations contribute most to the element’s changing forms, acting as the ‘switch’ in defining a wetland as either a source or sink of As. Much of our understanding of these important microbial catalyzed reactions follows relatively recent scientific discoveries. Here we document some of these key advances, with focuses on the implications that wetlands and their microbial mediated transformation pathways have on the global As cycle, the chemistries of microbial mediated As oxidation, reduction and methylation, and future research priorities areas. 相似文献
579.
The production of polyhydroxyalkanoates (PHAs) with a high fraction of 3-hydroxyvalerate (3HV) and 3-hydroxy-2-methylvalerate (3H2MV) from mixed culture enriched by valerate-dominant hydrolysate was evaluated in this study. After long-term enrichment, the culture showed strong ability to synthesize 3HV and 3H2MV, even with acetate-dominant substrate. The ultilization of single or mixed iso-/n-valerate by the enriched culture showed that the mixture of iso-valerate and n-valerate was more efficient substrate than any single in terms of balancing microbial growth and PHAs synthesis. Besides, through comparing the kinetics and stoichiometry of the tests supplying valerate and propionate, the enriched culture with equivalent valerate and propionate (1:1 molar ratio) exhibited superior PHAs production performances to pure valerate or propionate, attaining more than 70 mol% of 3HVand 3H2MV. The above findings reveal that valerate-dominant hydrolysate is a kind of suitable substrate to enrich PHAs producing culture with great capability to synthesize 3HV and 3H2MV monomers, thus improving product properties than pure poly(3-hydroxybutyrate) (P3HB); also 3HV and 3H2MV production behaviors can be regulated by the type of odd-carbon VFAs in the substrate. 相似文献
580.
Xiaorong Meng Shanshan Huo Lei Wang Xudong Wang Yongtao Lv Weiting Tang Rui Miao Danxi Huang 《Frontiers of Environmental Science & Engineering》2017,11(2):2
Negatively charged carboxymethylated polyethersulfone (CMPES) and positively charged quaternized polyethersulfone (QAPES) ultrafiltration (UF) membranes were prepared by bulk chemical modification and non-solvent induced phase separation method. The effects of PES membrane interfacial electrokinetic property on the bovine serum albumin (BSA) membrane fouling behavior were studied with the aid of the membrane-modified colloidal atomic force microscopy (AFM) probe. Electrokinetic test results indicated that the streaming potential (ΔE) of QAPES membrane was not consistent with its expected IEC value, however, within the pH range of 3–10, the ζ potentials of two charged-modified PES membranes were more stable than the unmodified membrane. When pH value was 3, 4.7 or 9, the interaction behavior between charged PES membrane and BSA showed that there was significant linear correlation between the jump distance r 0 of membrane-BSA adhesion force (F/R) and the ζ potential absolute value. Charged modification significantly reduced the adhesion of PES membrane-BSA, and the adhesion data was good linear correlated with the flux decline rate in BSA filtration process, especially reflected in the CMPES membrane. The above experimental facts proved that the charged membrane interfacial electric double layer structure and its electrokinetic property had strong ties with the protein membrane fouling behavior. 相似文献