首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   1篇
  国内免费   2篇
安全科学   4篇
废物处理   13篇
环保管理   14篇
综合类   89篇
基础理论   61篇
污染及防治   76篇
评价与监测   13篇
社会与环境   12篇
灾害及防治   3篇
  2023年   8篇
  2022年   6篇
  2021年   12篇
  2020年   6篇
  2019年   4篇
  2018年   12篇
  2017年   7篇
  2016年   12篇
  2015年   15篇
  2014年   28篇
  2013年   24篇
  2012年   22篇
  2011年   12篇
  2010年   12篇
  2009年   14篇
  2008年   17篇
  2007年   16篇
  2006年   17篇
  2005年   9篇
  2004年   10篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1993年   2篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有285条查询结果,搜索用时 15 毫秒
51.
We performed an experiment at pot scale to assess the effect of plant growth-promoting bacteria (PGPB) on the development of five plant species grown on a tailing dam substrate. None of the species even germinated on inoculated unamended tailing material, prompting use of compost amendment. The effect of inoculation on the amended material was to increase soil respiration, and promote elements immobilisation at plant root surface. This was associated with a decrease in the concentrations of elements in the leaching water and an increase of plant biomass, statistically significant in the case of two species: Agrostis capillaris and Festuca rubra. The experiment was repeated at lysimeter scale with the species showing the best development at pot scale, A. capillaris, and the significant total biomass increase as a result of inoculation was confirmed. The patterns of element distribution in plants also changed (the concentrations of metals in the roots of A. capillaris and F. rubra significantly decreased in inoculated treatments, while phosphorus concentration significantly increased in roots of A. capillaris in inoculated treatment at lysimeter scale). Measured variables for plant oxidative stress did not change after inoculations. There were differences of A. capillaris plant–soil system response between experimental scales as a result of different substrate column structure and plant age at the sampling moment. Soil respiration was significantly larger at lysimeter scale than at pot scale. Leachate concentrations of As, Mn and Ni had significantly larger concentrations at lysimeter scale than at pot scale, while Zn concentrations were significantly smaller. Concentrations of several metals were significantly smaller in A. capillaris at lysimeter scale than at pot scale. From an applied perspective, a system A. capillaris—compost—PGPB selected from the rhizosphere of the tailing dam native plants can be an option for the phytostabilisation of tailing dams. Results should be confirmed by investigation at field plot scale.  相似文献   
52.
53.
54.
55.
In industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources such as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors, such as material qualities, construction types and soil types. In our work, we consider a broad range of parameter values in the modeling of leaching and fate. This allows distinguishing between the impacts of various road constructions, as well as sites with different soil properties. The findings of this study promote the quantitative consideration of environmental impacts of long-term leaching in Life Cycle Assessment, complementing site-specific risk assessment, for the design of waste management strategies, particularly in the construction sector.  相似文献   
56.
Environmental Science and Pollution Research - The anionic surfactant SLES (sodium lauryl ether sulfate) is an emerging contaminant, being the main component of foaming agents that are increasingly...  相似文献   
57.
58.
The wheelie bins for the collection of municipal solid waste (MSW) shall be periodically washed. This operation is usually carried out by specific vehicles which consume about 5000 L of water per day. Wastewater derived from bins washing is usually stored on the same vehicle and then discharged and treated in a municipal WWTP. This paper presents a study performed to evaluate the reuse of the wastewater collected from bins washing after it has been treated in a small plant mounted on the vehicle; the advantage of such a system would be the reduction of both vehicle dimension and water consumption. The main results obtained by coagulation–flocculation tests performed on two wastewater samples are presented. The addition of 2 mL/L of an aqueous solution of aluminum polychloride (18% w/w), about 35 mL/L of an aqueous solution of CaO (4% w/w) and 25 mL/L of an aqueous solution of an anionic polyelectrolyte (1‰ w/w) can significantly reduce turbidity and COD in treated water (to about 99% and 42%, respectively); the concomitant increase of UV transmittance at 254 nm (up to 15%) enables UV disinfection application by a series of two ordinary UV lamps. Much higher UV transmittance values (even higher than 80%) can be obtained by dosing powdered activated carbon, which also results in a greater removal of COD.  相似文献   
59.
60.
Potentiometric titrations and lead sorption tests were conducted using muscovite, clinochlore, hematite, goethite, quartz, and a mixture of these same minerals. Mechanistic models were developed to represent and interpret these data. The aim was isolating the specific contribution of each mineral in proton and lead binding. Acid-base properties of each single mineral as well as their mixture were represented by discrete models, which consider the dissociation of n monoprotic sites (n-site/n-K(H) models). A one-site/one-K(H) model (logK(H1) = 10.69) was chosen for quartz (dissociation of SiOH edge hydroxyl groups). Goethite and hematite (FeOH groups) were represented by the same one-site/one-K(H) model (logK(H1) = 10.35). Three-site/three-K(H) models were used for muscovite (logK(H1) = 4.18; logK(H2) = 6.65; logK(H3) = 9.67) and clinochlore (logK(H1) = 3.84; logK(H2) = 6.57; logK(H3) = 9.71) assuming that SiOH and AlOH of the aluminosilicate matrix dissociate in the acid-neutral pH range while SiOH groups of quartz inclusions dissociate in the basic range. Similarly, the mixture of these minerals was represented by a three-site/three-K(H) model (logK(H1) = 3.39; logK(H2) = 6.72; logK(H3) = 10.82). According to crossed comparisons with single minerals, the first two sites of the mixture were associated with the aluminosilicate matrix (SiOH and AlOH respectively) and the third site with iron oxides (FeOH) and quartz groups. Additivity of proton binding in the mixture was demonstrated by simulating the mixture's titration curve. A unified model for the entire set of titration curves (single minerals and mixture) was also developed introducing a three-peak distribution function for proton affinity constants. Experimental data for lead sorption onto the mixture and individual minerals in 3-5 pH range denoted the competition between protons and metallic ions. The entire set of lead isotherms (individual mineral and mixture data) was represented adequately by a unified model taking into account both monodentate and bidentate complexes with the three active sites (additivity of lead binding). Experimental data of metal distribution in solid and liquid phases were successfully simulated by implementing the protonation and the surface complexation constants into the database of a dedicated software for chemical equilibria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号