首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   952篇
  免费   11篇
  国内免费   13篇
安全科学   59篇
废物处理   20篇
环保管理   138篇
综合类   143篇
基础理论   264篇
环境理论   1篇
污染及防治   227篇
评价与监测   82篇
社会与环境   34篇
灾害及防治   8篇
  2024年   4篇
  2023年   9篇
  2022年   4篇
  2021年   7篇
  2020年   7篇
  2019年   13篇
  2018年   17篇
  2017年   14篇
  2016年   24篇
  2015年   28篇
  2014年   15篇
  2013年   101篇
  2012年   40篇
  2011年   62篇
  2010年   46篇
  2009年   50篇
  2008年   58篇
  2007年   48篇
  2006年   36篇
  2005年   31篇
  2004年   29篇
  2003年   28篇
  2002年   35篇
  2001年   17篇
  2000年   19篇
  1999年   6篇
  1998年   16篇
  1997年   9篇
  1996年   14篇
  1995年   9篇
  1994年   13篇
  1993年   9篇
  1992年   11篇
  1991年   13篇
  1990年   8篇
  1989年   8篇
  1988年   4篇
  1987年   5篇
  1986年   6篇
  1985年   11篇
  1984年   5篇
  1982年   8篇
  1981年   6篇
  1978年   5篇
  1977年   4篇
  1975年   3篇
  1971年   4篇
  1969年   4篇
  1960年   4篇
  1956年   3篇
排序方式: 共有976条查询结果,搜索用时 15 毫秒
741.
In addition to heat production on the comb surface, honeybee workers frequently visit open cells (“gaps”) that are scattered throughout the sealed brood area, and enter them to incubate adjacent brood cells. We examined the efficiency of this heating strategy under different environmental conditions and for gap proportions from 0 to 50%. For gap proportions from 4 to 10%, which are common to healthy colonies, we find a significant reduction in the incubation time per brood cell to maintain the correct temperature. The savings make up 18 to 37% of the time, which would be required for this task in completely sealed brood areas without any gaps. For unnatural high proportions of gaps (>20%), which may be the result of inbreeding or indicate a poor condition of the colony, brood nest thermoregulation becomes less efficient, and the incubation time per brood cell has to increase to maintain breeding temperature. Although the presence of gaps is not essential to maintain an optimal brood nest temperature, a small number of gaps make heating more economical by reducing the time and energy that must be spent on this vital task. As the benefit depends on the availability, spatial distribution and usage of gaps by the bees, further studies need to show the extent to which these results apply to real colonies. M. Fehler and M. Kleinhenz contributed equally to this work.  相似文献   
742.
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are widely distributed in aquatic ecosystems. Their sources are known but few studies about their accumulation potential in river sediments exist. The aim of this study is to assess the concentrations of PFOA and PFOS in sediments in relation to their levels in river water receiving effluent from a waste water treatment plant (WWTP). PFOS accumulates by a factor of about 40 relative to river water, PFOA only up to threefold. In contrast to previous suggestions, in this case the enrichment on sediment is not correlated to the total organic carbon contents.  相似文献   
743.
The objective of this research project is to develop, test, validate, and demonstrate an analytical framework for assessing regional-scale forest disturbance in the mid-Atlantic region by linking forest disturbance and forest nitrogen export to surface waters at multiple spatial scales. It is hypothesized that excessive nitrogen (N) leakage (export) from forested watersheds is a potentially useful, integrative "indicator" of a negative change in forest function which occurs in synchrony with changes in forest structure and species composition. Our research focuses mainly on forest disturbance associated with recent defoliations by the gypsy moth larva (Lymantria dispar) at spatial scales ranging from small watersheds to the entire Chesapeake Bay watershed. An approach for assessing the magnitude of forest disturbance and its impact on surface water quality will be based on an empirical model relating forest N leakage and gypsy moth defoliation that will be calibrated using data from 25 intensively-monitored forested watersheds in the region and tested using data from more than 60 other forested watersheds in Virginia. Ultimately, the model will be extended to the region using spatially-extensive data describing: 1) the spatial distribution of dominant forest types in the mid-Atlantic region based on both remote sensing imagery and plot-scale vegetation data; 2) the spatial pattern of gypsy moth defoliation of forested areas from aerial mapping; and 3) measurements of dissolved N concentrations in streams from synoptic water quality surveys.  相似文献   
744.
Hydrological processes and crop growth were simulated for the state of Brandenburg (Germany) using the hydrological/vegetation/water quality model SWIM, which can be applied for mesoscale river basins or regions. Hydrological validation was carried out for three mesoscale river basins in the area. The crop growth module was validated regionally for winter wheat, winter barley and maize. After that the analysis of climate change impacts on hydrology and crop growth was performed, using a transient 1.5 K scenario of climate change for Brandenburg and restricting the crop spectrum to the three above mentioned crops. According to the scenario, precipitation is expected to increase. The impact study was done comparing simulation results for two scenario periods 2022–2030 and 2042–2050 with those for a reference period 1981–1992. The atmospheric CO2 concentrations for the reference period and two scenario periods were set to 346, 406 and 436 ppm, respectively. Two different methods – an empirical one and a semi-mechanistic one – were used for adjustment of net photosynthesis to altered CO2. With warming, the model simulates an increase of evapotranspiration (+9.5%, +15.4%) and runoff (+7.0%, +17.2%). The crop yield was only slightly altered under the climate change only scenario (no CO2 fertilization effect) for barley and maize, and it was reduced for wheat (–6.2%, –10.3%). The impact of higher atmospheric CO2 compensated for climate-related wheat yield losses, and resulted in an increased yield both for barley and maize compared to the reference scenario. The simulated combined effect of climate change and elevated CO2 on crop yield was about 7% higher for the C3 crops when the CO2 and temperature interaction was ignored. The assumption that stomatal control of transpiration is taking place at the regional scale led to further increase in crop yield, which was larger for maize than for wheat and barley. The regional water balance was practically not affected by the partial stimulation of net photosynthesis due to higher CO2, while the introduction of stomatal control of regional transpiration reduced evapotranspiration and enlarged notably runoff and ground water recharge.  相似文献   
745.
Stover DB  Day LF  Butnor JR  Drake BG 《Ecology》2007,88(5):1328-1334
Growth and distribution of coarse roots in time and space represent a gap in our understanding of belowground ecology. Large roots may play a critical role in carbon sequestration belowground. Using ground-penetrating radar (GPR), we quantified coarse-root biomass from an open-top chamber experiment in a scrub-oak ecosystem at Kennedy Space Center, Florida, USA. GPR propagates electromagnetic waves directly into the soil and reflects a portion of the energy when a buried object is contacted. In our study, we utilized a 1500 MHz antenna to establish correlations between GPR signals and root biomass. A significant relationship was found between GPR signal reflectance and biomass (R2 = 0.68). This correlation was applied to multiple GPR scans taken from each open-top chamber (elevated and ambient CO2). Our results showed that plots receiving elevated CO2 had significantly (P = 0.049) greater coarse-root biomass compared to ambient plots, suggesting that coarse roots may play a large role in carbon sequestration in scrub-oak ecosystems. This nondestructive method holds much promise for rapid and repeatable quantification of coarse roots, which are currently the most elusive aspect of long-term belowground studies.  相似文献   
746.
La Sorte FA  Thompson FR 《Ecology》2007,88(7):1803-1812
Climate change is thought to promote the poleward movement of geographic ranges; however, the spatial dynamics, mechanisms, and regional anthropogenic drivers associated with these trends have not been fully explored. We estimated changes in latitude of northern range boundaries, center of occurrence, and center of abundance for 254 species of winter avifauna in North America from 1975 to 2004. After accounting for the effect of range size and the location of the northern boundary, positive latitudinal trends were evident for the northern boundary (1.48 km/yr), center of occurrence (0.45 km/yr), and center of abundance (1.03 km/yr). The northern boundary, when examined across individual species, had the most variable trends (SD = 7.46 km/yr) relative to the center of occurrence (SD = 2.36 km/yr) and center of abundance (SD = 5.57 km/yr). Trends did not differ based on migratory status, but there was evidence that trends differed for species with ranges centered in the southern vs. northern portion of the study area. Species occurred more sporadically over time at northern range boundaries, and northern boundaries were associated with a concentration of colonization and extirpation events, with a greater prevalence of colonization events likely promoting poleward trends. Regional anthropogenic drivers explained approximately 8% of the trend for the northern boundary, 14% for the center of occurrence, and 18% for the center of abundance; however, these effects were localized in the northern portion of species' ranges and were associated with distributional changes within ranges, primarily abundance, producing patterns that mimicked poleward movements. We conclude that poleward distributional shifts represent the interaction between climate change and regional factors whose outcome is determined by the scale of the analysis and the biotic and abiotic features in the region, and how anthropogenic activities have impacted these features.  相似文献   
747.
This study reports the first multi-year observations on the reproductive patterns for an Antarctic predator/scavenger, Odontaster validus (Koehler 1912). Seastars were collected monthly from a shallow site (15–20 m depth) near the British Antarctic Survey (BAS) Rothera Research Station (Adelaide Island, 67°34′S 68°08′W) from July 1997 to January 2001. Reproductive condition, oocyte size frequencies and spermatogenesis were examined in at least ten seastars each month using histological and image analysis techniques. Gonad indices (GI) and pyloric caeca indices (PI) were also examined in the same samples. Female and male GIs varied seasonally, in parallel with a reduction in the proportion of large oocytes and mature sperm in the gonad in August to mid-October following winter spawning. Despite there being remarkable consistency in the timing of spawning from year to year, differences in the reproductive condition of individuals were apparent. Patterns in the digestive tissues also varied with season, peaking in December and reaching a minimum in February in two of the three study years. This weaker annual pattern may partly reflect the varied diet of this predator/scavenger species, which is not directly dependant on the timing and magnitude of the annual phytoplankton bloom. Pooled oocyte size distributions and residual analysis suggested that oogenesis progressed over 18–24 months, with the largest of the two size classes (maximum diameter = 183 μm) being spawned annually. This pattern of oocyte growth and spawning was previously reported in the early 1960s for an O. validus population from McMurdo Sound, which lies south of Rothera by 10° latitude. The extremely catholic diet of this predator/scavenger suggests the reproductive patterns of the seastar will be less susceptible to changes in food supply compared to polar suspension feeders or deposit feeders. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
748.
Volatile organic compounds (VOCs) from agricultural sources are believed to be an important contributor to tropospheric ozone in some locations. Recent research suggests that silage is a major source of VOCs emitted from agriculture, but only limited data exist on silage emissions. Ethanol is the most abundant VOC emitted from corn silage; therefore, ethanol was used as a representative compound to characterize the pattern of emission over time and to quantify the effect of air velocity and temperature on emission rate. Ethanol emission was measured from corn silage samples removed intact from a bunker silo. Emission rate was monitored over 12 h for a range in air velocity (0.05, 0.5, and 5 m s?1) and temperature (5, 20, and 35 °C) using a wind tunnel system. Ethanol flux ranged from 0.47 to 210 g m?2 h?1 and 12 h cumulative emission ranged from 8.5 to 260 g m?2. Ethanol flux was highly dependent on exposure time, declining rapidly over the first hour and then continuing to decline more slowly over the duration of the 12 h trials. The 12 h cumulative emission increased by a factor of three with a 30 °C increase in temperature and by a factor of nine with a 100-fold increase in air velocity. Effects of air velocity, temperature, and air-filled porosity were generally consistent with a conceptual model of VOC emission from silage. Exposure duration, temperature, and air velocity should be taken into consideration when measuring emission rates of VOCs from silage, so emission rate data obtained from studies that utilize low air flow methods are not likely representative of field conditions.  相似文献   
749.
Silage on dairy farms has been identified as a major source of volatile organic compound (VOC) emissions. However, rates of VOC emission from silage are not accurately known. In this work, we measured ethanol (a dominant silage VOC) emission from loose corn silage and exposed corn silage particles using wind tunnel systems. Flux of ethanol was highest immediately after exposing loose silage samples to moving air (as high as 220 g m?2 h?1) and declined by as much as 76-fold over 12 h as ethanol was depleted from samples. Emission rate and cumulative 12 h emission increased with temperature, silage permeability, exposed surface area, and air velocity over silage samples. These responses suggest that VOC emission from silage on farms is sensitive to climate and management practices. Ethanol emission rates from loose silage were generally higher than previous estimates of total VOC emission rates from silage and mixed feed. For 15 cm deep loose samples, mean cumulative emission was as high as 170 g m?2 (80% of initial ethanol mass) after 12 h of exposure to an air velocity of 5 m s?1. Emission rates measured with an emission isolation flux chamber were lower than rates measured in a wind tunnel and in an open setting. Results show that the US EPA emission isolation flux chamber method is not appropriate for estimating VOC emission rates from silage in the field.  相似文献   
750.
Large-scale agricultural activities have come under scrutiny for possible contributions to the emission of ozone precursors. The San Joaquin Valley (SJV) of California is an area with intense agricultural activity that exceeds the federal ozone standards for more than 30 to 40 d yr(-1) and the more stringent state standards for more than 100 d yr(-1). Pesticides are used widely in both agricultural and residential subregions of the SJV, but the largest use, by weight of "active ingredient," is in agriculture. The objective of the study was to determine the role of pesticide application on airborne volatile organic compounds (VOC) concentrations and ozone formation in the SJV. The ozone formation from the pesticide formulation sprayed on commercial orchards was studied using two transportable smog chambers at four application sites during the summers of 2007 and 2008. In addition to the direct measurements of ozone formation, airborne VOC concentrations were measured before and after pesticide spraying using canister and sorbent tube sampling techniques. Soil VOC concentrations were also measured to understand the distribution of VOCs between different environmental compartments. Numerous VOCs were detected in the air and soil samples throughout the experiment but higher molecular weight aromatic hydrocarbons were the primary compounds observed in elevated concentrations immediately after pesticide spraying. Measurements indicate that the ozone concentration formed by VOC downwind of the orchard may increase up to 15 ppb after pesticide application, with a return back to prespray levels after 1 to 2 d.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号