首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2403篇
  免费   68篇
  国内免费   28篇
安全科学   125篇
废物处理   102篇
环保管理   569篇
综合类   241篇
基础理论   645篇
环境理论   5篇
污染及防治   560篇
评价与监测   158篇
社会与环境   66篇
灾害及防治   28篇
  2023年   21篇
  2022年   37篇
  2021年   53篇
  2020年   26篇
  2019年   48篇
  2018年   60篇
  2017年   68篇
  2016年   95篇
  2015年   60篇
  2014年   74篇
  2013年   223篇
  2012年   99篇
  2011年   150篇
  2010年   109篇
  2009年   122篇
  2008年   128篇
  2007年   123篇
  2006年   137篇
  2005年   72篇
  2004年   72篇
  2003年   88篇
  2002年   65篇
  2001年   39篇
  2000年   55篇
  1999年   37篇
  1998年   36篇
  1997年   18篇
  1996年   38篇
  1995年   32篇
  1994年   36篇
  1993年   19篇
  1992年   15篇
  1991年   15篇
  1990年   17篇
  1989年   18篇
  1988年   17篇
  1987年   13篇
  1986年   15篇
  1985年   13篇
  1984年   13篇
  1983年   15篇
  1982年   21篇
  1981年   20篇
  1980年   12篇
  1979年   12篇
  1978年   10篇
  1977年   7篇
  1976年   4篇
  1975年   7篇
  1969年   4篇
排序方式: 共有2499条查询结果,搜索用时 15 毫秒
91.
Nitrogen fertility and abiotic stresses management in cotton crop: a review   总被引:1,自引:0,他引:1  
This review outlines nitrogen (N) responses in crop production and potential management decisions to ameliorate abiotic stresses for better crop production. N is a primary constituent of the nucleotides and proteins that are essential for life. Production and application of N fertilizers consume huge amounts of energy, and excess is detrimental to the environment. Therefore, increasing plant N use efficiency (NUE) is important for the development of sustainable agriculture. NUE has a key role in crop yield and can be enhanced by controlling loss of fertilizers by application of humic acid and natural polymers (hydrogels), having high water-holding capacity which can improve plant performance under field conditions. Abiotic stresses such as waterlogging, drought, heat, and salinity are the major limitations for successful crop production. Therefore, integrated management approaches such as addition of aminoethoxyvinylglycine (AVG), the film antitranspirant (di-1-p-menthene and pinolene) nutrients, hydrogels, and phytohormones may provide novel approaches to improve plant tolerance against abiotic stress-induced damage. Moreover, for plant breeders and molecular biologists, it is a challenge to develop cotton cultivars that can tolerate plant abiotic stresses while having high potential NUE for the future.  相似文献   
92.
A novel membrane system, the Biomass Concentrator Reactor (BCR), was evaluated as an alternative technology for the treatment of municipal wastewater. Because the BCR is equipped with a membrane whose average poresize is 20 μm (18–28 μm), the reactor requires low-pressure differential to operate (gravity). The effectiveness of this system was evaluated for the removal of carbon and nitrogen using two identical BCRs, identified as conventional and hybrid, that were operated in parallel. The conventional reactor was operated under full aerobic conditions (i.e., organic carbon and ammonia oxidation), while the hybrid reactor incorporated an anoxic zone for nitrate reduction as well as an aerobic zone for organic carbon and ammonia oxidation. Both reactors were fed synthetic wastewater at a flow rate of 71 L d?1, which resulted in a hydraulic retention time of 9 h. In the case of the hybrid reactor, the recycle flow from the aerobic zone to the anoxic zone was twice the feed flow rate. Reactor performance was evaluated under two solids retention times (6 and 15 d). Under these conditions, the BCRs achieved nearly 100% mixed liquor solids separation with a hydraulic head differential of less than 2.5 cm. The COD removal efficiency was over 90%. Essentially complete nitrification was achieved in both systems, and nitrogen removal in the hybrid reactor was close to the expected value (67%).  相似文献   
93.
Methanogenic granular sludge and wastewater fermented sludge were used as inocula for batch tests of anaerobic bioremediation of chlorinated pesticide contaminated soil. Results obtained for both types of biomass were similar: 80 to over 90% of γ -hexachlorocyclohexane (γ-HCH), 1,1,1-trichloro-2,2-bis-(4-methoxyphenyl)ethane (methoxychlor) and 1,1,1-trichloro-2,2-bis-(4-chlorophenyl)ethane (DDT) removed in 4–6 weeks. Residual fractions of these pesticides persisted till the end of the 16-week experiment. DDT was degraded through 1,1-dichloro-2,2-bis-(4-chlorophenyl)ethane (DDD). Accumulation of this product corresponded stoichiometrically only to 34–53% of removed DDT, supposedly due to its further transformations, finally resulting in formation of detected 4,4′-dichlorobenzophenone (DBP). Addition of 0.5 mM Tween 80 nonionic surfactant resulted in about a twofold decrease of γ -HCH and methoxychlor residual concentrations, as well as considerably lower DDD accumulation (7–29%) and higher DBP production. However, 1.25 mM dose of this surfactant applied together with granular sludge brought DDD levels back to that observed for treatments with the sludge alone, also impairing DBP formation.  相似文献   
94.
As part of the 2010 Van Nuys tunnel study, researchers from the University of Denver measured on-road fuel-specific light-duty vehicle emissions from nearly 13,000 vehicles on Sherman Way (0.4 miles west of the tunnel) in Van Nuys, California, with its multispecies Fuel Efficiency Automobile Test (FEAT) remote sensor a week ahead of the tunnel measurements. The remote sensing mean gram per kilogram carbon monoxide (CO), hydrocarbon (HC), and oxide of nitrogen (NOx) measurements are 8.9% lower, 41% higher, and 24% higher than the tunnel measurements, respectively. The remote sensing CO/NOx and HC/NOx mass ratios are 28% lower and 20% higher than the comparable tunnel ratios. Comparisons with the historical tunnel measurements show large reductions in CO, HC, and NOx over the past 23 yr, but little change in the HC/NOx mass ratio since 1995. The fleet CO and HC emissions are increasingly dominated by a few gross emitters, with more than a third of the total emissions being contributed by less than 1% of the fleet. An example of this is a 1995 vehicle measured three times with an average HC emission of 419 g/kg fuel (two-stroke snowmobiles average 475 g/kg fuel), responsible for 4% of the total HC emissions. The 2008 economic downturn dramatically reduced the number of new vehicles entering the fleet, leading to an age increase (>1 model year) of the Sherman Way fleet that has increased the fleet's ammonia (NH3) emissions. The mean NH3 levels appear little changed from previous measurements collected in the Van Nuys tunnel in 1993. Comparisons between weekday and weekend data show few fleet differences, although the fraction of light-duty diesel vehicles decreased from the weekday (1.7%) to Saturday (1.2%) and Sunday (0.6%).

Implications: On-road remote sensing emission measurements of light-duty vehicles on Sherman Way in Van Nuys, California, show large historical emission reductions for CO and HC emissions despite an older fleet arising from the 2008 economic downturn. Fleet CO and HC emissions are increasingly dominated by a few gross emitters, with a single 1995 vehicle measured being responsible for 4% of the entire fleet's HC emissions. Finding and repairing and/or scrapping as little as 2% of the fleet would reduce on-road tailpipe emissions by as much as 50%. Ammonia emissions have locally increased with the increasing fleet age.  相似文献   
95.
Abstract

U.S. Environmental Protection Agency (EPA) Emission Measurement Center in conjunction with EPA Regions VI and VIII, the state of Utah, and the U.S. Department of Defense have conducted a series of long-term pilot and field tests to determine the accuracy and reliability of a visible opacity monitoring system consisting of a conventional digital camera and a separate computer software application for plume opacity determination. This technology, known as the Digital Opacity Compliance System (DOCS), has been successfully demonstrated at EPA-sponsored Method-9 “smoke schools,” as well as at a number of government and commercially operated industrial facilities.

Results from the current DOCS regulatory pilot study demonstrated that, under regulatory enforcement conditions, the average difference in opacity measurement between the DOCS technology and EPA Reference Method 9 (Method 9) was 1.12%. This opacity difference, which was computed from the evaluation of 241 regulated air sources, was found to be statistically significant at the 99% confidence level. In evaluating only those sources for which a nonzero visible opacity level was recorded, the average difference in opacity measurement between the DOCS technology and Method 9 was 1.20%. These results suggest that the two opacity measurement methods are essentially equivalent when measuring the opacity of visible emissions.

Given the costs and technical limitations associated with use of Method 9, there is a recognized need to develop accurate, reproducible, and scientifically defensible alternatives to the use of human observers. The use of digital imaging/processing brings current technology to bear on this important regulatory issue. Digital technology offers increased accuracy, a permanent record of measurement events, lower costs, and a scientifically defensible approach for opacity determination.  相似文献   
96.
Dramatic increases in the development of oil and natural gas from shale formations will result in large quantities of drill cuttings, flowback water, and produced water. These organic-rich shale gas formations often contain elevated concentrations of naturally occurring radioactive materials (NORM), such as uranium, thorium, and radium. Production of oil and gas from these formations will also lead to the development of technologically enhanced NORM (TENORM) in production equipment. Disposal of these potentially radium-bearing materials in municipal solid waste (MSW) landfills could release radon to the atmosphere. Risk analyses of disposal of radium-bearing TENORM in MSW landfills sponsored by the Department of Energy did not consider the effect of landfill gas (LFG) generation or LFG control systems on radon emissions. Simulation of radon emissions from landfills with LFG generation indicates that LFG generation can significantly increase radon emissions relative to emissions without LFG generation, where the radon emissions are largely controlled by vapor-phase diffusion. Although the operation of LFG control systems at landfills with radon source materials can result in point-source atmospheric radon plumes, the LFG control systems tend to reduce overall radon emissions by reducing advective gas flow through the landfill surface, and increasing the radon residence time in the subsurface, thus allowing more time for radon to decay. In some of the disposal scenarios considered, the radon flux from the landfill and off-site atmospheric activities exceed levels that would be allowed for radon emissions from uranium mill tailings.

Implications: Increased development of hydrocarbons from organic-rich shale formations has raised public concern that wastes from these activities containing naturally occurring radioactive materials, particularly radium, may be disposed in municipal solid waste landfills and endanger public health by releasing radon to the atmosphere. This paper analyses the processes by which radon may be emitted from a landfill to the atmosphere. The analyses indicate that landfill gas generation can significantly increase radon emissions, but that the actual level of radon emissions depend on the place of the waste, construction of the landfill cover, and nature of the landfill gas control system.  相似文献   
97.
Abstract: Water supply uncertainty continues to threaten the reliability of regional water resources in the western United States. Climate variability and water dispute potentials induce water managers to develop proactive adaptive management strategies to mitigate future hydroclimate impacts. The Eastern Snake Plain Aquifer in the state of Idaho is also facing these challenges in the sense that population growth and economic development strongly depend on reliable water resources from underground storage. Drought and subsequent water conflict often drive scientific research and political agendas because water resources availability and aquifer management for a sustainable rural economy are of great interest. In this study, a system dynamics approach is applied to address dynamically complex problems with management of the aquifer and associated surface‐water and groundwater interactions. Recharge and discharge dynamics within the aquifer system are coded in an environmental modeling framework to identify long‐term behavior of aquifer responses to uncertain future hydrological variability. The research shows that the system dynamics approach is a promising modeling tool to develop sustainable water resources planning and management in a collaborative decision‐making framework and also to provide useful insights and alternative opportunities for operational management, policy support, and participatory strategic planning to mitigate future hydroclimate impacts in human dimensions.  相似文献   
98.
Morris DF  Krishnan N 《Ambio》2012,41(Z1):90-99
The need for transparency is taking more prominence in international climate negotiations as developed countries pledge large sums of money to foster adaptation efforts in developing countries. Tools that provide accurate and up-to-date spatial information that can be easily used and vetted by local practitioners may provide effective and affordable ways to improve transparency. The Global Adaptation Atlas is such a tool, combining vetted, publicly available climate impact data with timely maps of on the ground adaptation projects to highlight confluences of effects of climate change with actions taken to address those effects. Here, we describe the structure and general functions of the Global Adaptation Atlas and explain how it may be utilized to track short-term investments in adaptation. Over longer time scales, it may also help gauge the effectiveness of specific adaptation investments as well as reveal how different climate impacts affect long-term investment in differing regions.  相似文献   
99.
Ozonation as final wastewater (WW) polishing step, following conventional activated sludge treatment is increasingly implemented in sewage treatment for contaminant degradation to prevent surface water pollution. While the oxidative degradation of chemicals has been extensively investigated, the in vivo toxicological characteristics of ozonated whole effluents are rarely a matter of research.In the present study, whole effluents were toxicologically evaluated with an in vivo test battery before and after full-scale ozonation and subsequent sand filtration on site at a treatment plant. One aquatic plant (duckweed, Lemna minor) and five invertebrate species of different systematic groups (Lumbriculus variegatus, Chironomus riparius, Potamopyrgus antipodarum, Daphnia magna) were exposed to the effluents in a flow-through-designed test system with a test duration of 7-28 d.None of the considered toxicity endpoints correlated with the pollutant elimination. A tendency towards an increased toxicity after ozonation was apparent in three of the test systems showing [statistically] significant adverse effects in the L. variegatus toxicity test (decrease in reproduction and biomass). After sand filtration, adverse effects were reduced to a similar level like after conventional treatment. Solely the Daphnia reproduction test revealed beneficial effects after ozonation in combination with sand filtration.Results of the test battery indicate the formation of adverse oxidation products during WW ozonation. L. variegatus appeared to be the most sensitive of the five test species. Sand filtration effectively removes or detoxifies toxic oxidation products, as toxic effects were subsequently reduced to the level after conventional treatment.  相似文献   
100.
Energy Systems Theory (EST) provides a framework for understanding and interpreting sustainability. EST implies that "what is sustainable" for a system at any given level of organization is determined by the cycles of change originating in the next larger system and within the system of concern. The pulsing paradigm explains the ubiquitous cycles of change that apparently govern ecosystems, rather than succession to a steady state that is then sustainable. Therefore, to make robust decisions among environmental policies and alternatives, decision-makers need to know where their system resides in the cycles of change that govern it. This theory was examined by performing an emergy evaluation of the sustainability of a regional system, the San Luis Basin (SLB), CO. By 1980, the SLB contained a climax stage agricultural system with well-developed crop and livestock production along with food and animal waste processing. The SLB is also a hinterland in that it exports raw materials and primary products (exploitation stage) to more developed areas. Emergy indices calculated for the SLB from 1995 to 2005 revealed changes in the relative sustainability of the system over this time. The sustainability of the region as indicated by the renewable emergy used as a percent of total use declined 4%, whereas, the renewable carrying capacity declined 6% over this time. The Emergy Sustainability Index (ESI) showed the largest decline (27%) in the sustainability of the region. The total emergy used by the SLB, a measure of system well-being, was fairly stable (CV?=?0.05). In 1997, using renewable emergy alone, the SLB could support 50.7% of its population at the current standard of living, while under similar conditions the U.S. could support only 4.8% of its population. In contrast to other indices of sustainability, a new index, the Emergy Sustainable Use Index (ESUI), which considers the benefits gained by the larger system compared to the potential for local environmental damage, increased 34% over the period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号