首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16458篇
  免费   205篇
  国内免费   140篇
安全科学   479篇
废物处理   611篇
环保管理   2329篇
综合类   3134篇
基础理论   4122篇
环境理论   10篇
污染及防治   4038篇
评价与监测   1002篇
社会与环境   950篇
灾害及防治   128篇
  2022年   123篇
  2021年   132篇
  2020年   112篇
  2019年   143篇
  2018年   203篇
  2017年   248篇
  2016年   342篇
  2015年   291篇
  2014年   378篇
  2013年   1401篇
  2012年   492篇
  2011年   656篇
  2010年   533篇
  2009年   595篇
  2008年   654篇
  2007年   686篇
  2006年   656篇
  2005年   518篇
  2004年   504篇
  2003年   519篇
  2002年   449篇
  2001年   555篇
  2000年   435篇
  1999年   256篇
  1998年   212篇
  1997年   195篇
  1996年   223篇
  1995年   225篇
  1994年   220篇
  1993年   212篇
  1992年   219篇
  1991年   209篇
  1990年   208篇
  1989年   181篇
  1988年   156篇
  1987年   135篇
  1986年   160篇
  1985年   161篇
  1984年   167篇
  1983年   166篇
  1982年   163篇
  1981年   167篇
  1980年   158篇
  1979年   151篇
  1978年   112篇
  1977年   124篇
  1974年   111篇
  1973年   93篇
  1972年   108篇
  1971年   88篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
961.
Abstract

Three new methods applicable to the determination of hazardous metal concentrations in stationary source emissions were developed and evaluated for use in U.S. Environmental Protection Agency (EPA) compliance applications. Two of the three independent methods, a continuous emissions monitor-based method (Xact) and an X-ray-based filter method (XFM), are used to measure metal emissions. The third method involves a quantitative aerosol generator (QAG), which produces a reference aerosol used to evaluate the measurement methods. A modification of EPA Method 301 was used to validate the three methods for As, Cd, Cr, Pb, and Hg, representing three hazardous waste combustor Maximum Achievable Control Technology (MACT) metal categories (low volatile, semivolatile, and volatile). The modified procedure tested the methods using more stringent criteria than EPA Method 301; these criteria included accuracy, precision, and linearity. The aerosol generation method was evaluated in the laboratory by comparing actual with theoretical aerosol concentrations. The measurement methods were evaluated at a hazardous waste combustor (HWC) by comparing measured with reference aerosol concentrations. The QAG, Xact, and XFM met the modified Method 301 validation criteria. All three of the methods demonstrated precisions and accuracies on the order of 5%. In addition, correlation coefficients for each method were on the order of 0.99, confirming the methods’ linear response and high precision over a wide range of concentrations. The measurement methods should be applicable to emissions from a wide range of sources, and the reference aerosol generator should be applicable to additional analytes. EPA recently approved an alternative monitoring petition for an HWC at Eli Lilly’s Tippecanoe site in Lafayette, IN, in which the Xact is used for demonstrating compliance with the HWC MACT metal emissions (low volatile, semivolatile, and volatile). The QAG reference aerosol generator was approved as a method for providing a quantitative reference aerosol, which is required for certification and continuing quality assurance of the Xact.  相似文献   
962.
Abstract

About half of the world's population now lives in urban areas because of the opportunity for a better quality of life. Many of these urban centers are expanding rapidly, leading to the growth of megacities, which are often defined as metropolitan areas with populations exceeding 10 million inhabitants. These concentrations of people and activity are exerting increasing stress on the natural environment, with impacts at urban, regional and global levels. In recent decades, air pollution has become one of the most important problems of megacities. Initially, the main air pollutants of concern were sulfur compounds, which were generated mostly by burning coal. Today, photochemical smog—induced primarily from traffic, but also from industrial activities, power generation, and solvents—has become the main source of concern for air quality, while sulfur is still a major problem in many cities of the developing world. Air pollution has serious impacts on public health, causes urban and regional haze, and has the potential to contribute significantly to global climate change. Yet, with appropriate planning megacities can efficiently address their air quality problems through measures such as application of new emission control technologies and development of mass transit systems.

This review is focused on nine urban centers, chosen as case studies to assess air quality from distinct perspectives: from cities in the industrialized nations to cities in the developing world. This review considers not only megacities, but also urban centers with somewhat smaller populations, for while each city—its problems, resources, and outlook—is unique, the need for a holistic approach to complex environmental problems is the same. There is no single strategy to reduce air pollution in megacities; a mix of policy measures will be needed to improve air quality. Experience shows that strong political will coupled with public dialogue is essential to effectively implement the regulations required to address air quality.  相似文献   
963.
Abstract

Average concentrations of particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM2.5) in Steubenville, OH, have decreased by more than 10 μg/m3 since the landmark Harvard Six Cities Study1 associated the city’s elevated PM2.5 concentrations with adverse health effects in the 1980s. Given the promulgation of a new National Ambient Air Quality Standard (NAAQS) for PM2.5 in 1997, a current assessment of PM2.5 in the Steubenville region is warranted. The Steubenville Comprehensive Air Monitoring Program (SCAMP) was conducted from 2000 through 2002 to provide such an assessment. The program included both an outdoor ambient air monitoring component and an indoor and personal air sampling component. This paper, which is the first in a series of four that will present results from the outdoor portion of SCAMP, provides an overview of the outdoor ambient air monitoring program and addresses statistical issues, most notably autocorrelation, that have been overlooked by many PM2.5 data analyses. The average PM2.5 concentration measured in Steubenville during SCAMP (18.4 μg/m3) was 3.4g/m3 above the annual PM2.5 NAAQS. On average, sulfate and organic material accounted for ~31% and 25%, respectively, of the total PM2.5 mass. Local sources contributed an estimated 4.6 μg/m3 to Steubenville’s mean PM2.5 concentration. PM2.5 and each of its major ionic components were significantly correlated in space across all pairs of monitoring sites in the region, suggesting the influence of meteorology and long-range transport on regional PM2.5 concentrations. Statistically significant autocorrelation was observed among time series of PM2.5 and component data collected at daily and 1-in-4-day frequencies during SCAMP. Results of spatial analyses that accounted for autocorrelation were generally consistent with findings from previous studies that did not consider autocorrelation; however, these analyses also indicated that failure to account for autocorrelation can lead to incorrect conclusions about statistical significance.  相似文献   
964.
Abstract

Particulate-phase exhaust properties from two different types of ground-based jet aircraft engines—high-thrust and turboshaft—were studied with real-time instruments on a portable pallet and additional time-integrated sampling devices. The real-time instruments successfully characterized rapidly changing particulate mass, light absorption, and polycyclic aromatic hydrocarbon (PAH) content. The integrated measurements included particulate-size distributions, PAH, and carbon concentrations for an entire test run (i.e., “run-integrated” measurements). In all cases, the particle-size distributions showed single modes peaking at 20–40nm diameter. Measurements of exhaust from high-thrust F404 engines showed relatively low-light absorption compared with exhaust from a turboshaft engine. Particulate-phase PAH measurements generally varied in phase with both net particulate mass and with light-absorbing particulate concentrations. Unexplained response behavior sometimes occurred with the real-time PAH analyzer, although on average the real-time and integrated PAH methods agreed within the same order of magnitude found in earlier investigations.  相似文献   
965.
966.
Abstract

To increase the operating lifetime of landfills and to lower leachate treatment costs, an increasing number of municipal solid waste (MSW) landfills are being managed as either aerobic or anaerobic bioreactors. Landfill gas composition, respiration rates, and subsidence were measured for 400 days in 200-L tanks filled with fresh waste materials to compare the relative effectiveness of the two treatments. Tanks were prepared to provide the following conditions: (1) air injection and leachate recirculation (aerobic), (2) leachate recirculation (anaerobic), and (3) no treatment (anaerobic). Respiration tests on the aerobic wet tank showed a steady decrease in oxygen consumption rates from 1.3 mol/day at 20 days to 0.1 mol/day at 400 days. Aerobic wet tanks produced, on average, 6 mol of carbon dioxide (CO2)/kg of MSW as compared with anaerobic wet tanks, which produced 2.2 mol methane/kg of MSW and 2.0 mol CO2/kg methane. Over the test period, the aerobic tanks settled on average 35%, anaerobic tanks settled 21.7%, and the no-treatment tank settled 7.5%, equivalent to overall mass loss in the corresponding reactors. Aerobic tanks reduced stabilization time and produced negligible odor compared with anaerobic tanks, possibly because of the 2 orders of magnitude lower leachate ammonia levels in the aerobic tank. Both treatment regimes provide the opportunity for disposal and remediation of liquid waste.  相似文献   
967.
Abstract

Although it has long been recognized that road and building construction activity constitutes an important source of particulate matter (PM) emissions throughout the United States, until recently only limited research has been directed to its characterization. This paper presents the results of PM10 and PM2.5 (particles ≤10 μm and ≤2.5 μm in aerodynamic diameter, respectively) emission factor development from the onsite testing of component operations at actual construction sites during the period 1998 –2001. Much of the testing effort was directed at earthmoving operations with scrapers, because earthmoving is the most important contributor of PM emissions across the construction industry. Other sources tested were truck loading and dumping of crushed rock and mud and dirt carryout from construction site access points onto adjacent public paved roads. Also tested were the effects of watering for control of scraper travel routes and the use of paved and graveled aprons at construction site access points for reducing mud and dirt carryout. The PM10 emissions from earthmoving were found to be up to an order of magnitude greater than predicted by AP-42 emission factors drawn from other industries. As expected, the observed PM2.5:PM10 emission factor ratios reflected the relative importance of the vehicle exhaust and the resuspended dust components of each type of construction activity. An unexpected finding was that PM2.5 emissions from mud and dirt carryout were much less than anticipated. Finally, the control efficiency of watering of scraper travel routes was found to closely follow a bilinear moisture model.  相似文献   
968.
A method of predicting point and path-averaged ambient air VOC concentrations is described. This method was developed for the case of a plume generated from a single point source, and is based on the relationship between wind directional frequency and concentration. One-minute means of wind direction and wind speed were used as inputs to a Gaussian dispersion model to develop this relationship.

Both FTIR spectrometry and a whole-air sampling method were used to monitor VOC plumes during simulated field tests. One test set was also conducted using only whole-air samplers deployed in a closely-spaced network, thus providing an evaluation of the prediction technique free of any bias that might exist between the two analytical methods.

Correlations between observed point concentrations and wind directional frequencies were significant at the 0.05 level in most cases. Predicted path-integrated concentrations, based on observed point concentrations and meteorological data, were strongly correlated with observed values. Predicted point concentrations, based on observed path-integrated concentrations and meteorological data, accurately reflected the location and magnitude of the highest concentrations from each test, as well as the shape of the concentration-versus-crosswind distance curve.  相似文献   
969.
Dramatic increases in the development of oil and natural gas from shale formations will result in large quantities of drill cuttings, flowback water, and produced water. These organic-rich shale gas formations often contain elevated concentrations of naturally occurring radioactive materials (NORM), such as uranium, thorium, and radium. Production of oil and gas from these formations will also lead to the development of technologically enhanced NORM (TENORM) in production equipment. Disposal of these potentially radium-bearing materials in municipal solid waste (MSW) landfills could release radon to the atmosphere. Risk analyses of disposal of radium-bearing TENORM in MSW landfills sponsored by the Department of Energy did not consider the effect of landfill gas (LFG) generation or LFG control systems on radon emissions. Simulation of radon emissions from landfills with LFG generation indicates that LFG generation can significantly increase radon emissions relative to emissions without LFG generation, where the radon emissions are largely controlled by vapor-phase diffusion. Although the operation of LFG control systems at landfills with radon source materials can result in point-source atmospheric radon plumes, the LFG control systems tend to reduce overall radon emissions by reducing advective gas flow through the landfill surface, and increasing the radon residence time in the subsurface, thus allowing more time for radon to decay. In some of the disposal scenarios considered, the radon flux from the landfill and off-site atmospheric activities exceed levels that would be allowed for radon emissions from uranium mill tailings.

Implications: Increased development of hydrocarbons from organic-rich shale formations has raised public concern that wastes from these activities containing naturally occurring radioactive materials, particularly radium, may be disposed in municipal solid waste landfills and endanger public health by releasing radon to the atmosphere. This paper analyses the processes by which radon may be emitted from a landfill to the atmosphere. The analyses indicate that landfill gas generation can significantly increase radon emissions, but that the actual level of radon emissions depend on the place of the waste, construction of the landfill cover, and nature of the landfill gas control system.  相似文献   
970.
As part of the 2010 Van Nuys tunnel study, researchers from the University of Denver measured on-road fuel-specific light-duty vehicle emissions from nearly 13,000 vehicles on Sherman Way (0.4 miles west of the tunnel) in Van Nuys, California, with its multispecies Fuel Efficiency Automobile Test (FEAT) remote sensor a week ahead of the tunnel measurements. The remote sensing mean gram per kilogram carbon monoxide (CO), hydrocarbon (HC), and oxide of nitrogen (NOx) measurements are 8.9% lower, 41% higher, and 24% higher than the tunnel measurements, respectively. The remote sensing CO/NOx and HC/NOx mass ratios are 28% lower and 20% higher than the comparable tunnel ratios. Comparisons with the historical tunnel measurements show large reductions in CO, HC, and NOx over the past 23 yr, but little change in the HC/NOx mass ratio since 1995. The fleet CO and HC emissions are increasingly dominated by a few gross emitters, with more than a third of the total emissions being contributed by less than 1% of the fleet. An example of this is a 1995 vehicle measured three times with an average HC emission of 419 g/kg fuel (two-stroke snowmobiles average 475 g/kg fuel), responsible for 4% of the total HC emissions. The 2008 economic downturn dramatically reduced the number of new vehicles entering the fleet, leading to an age increase (>1 model year) of the Sherman Way fleet that has increased the fleet's ammonia (NH3) emissions. The mean NH3 levels appear little changed from previous measurements collected in the Van Nuys tunnel in 1993. Comparisons between weekday and weekend data show few fleet differences, although the fraction of light-duty diesel vehicles decreased from the weekday (1.7%) to Saturday (1.2%) and Sunday (0.6%).

Implications: On-road remote sensing emission measurements of light-duty vehicles on Sherman Way in Van Nuys, California, show large historical emission reductions for CO and HC emissions despite an older fleet arising from the 2008 economic downturn. Fleet CO and HC emissions are increasingly dominated by a few gross emitters, with a single 1995 vehicle measured being responsible for 4% of the entire fleet's HC emissions. Finding and repairing and/or scrapping as little as 2% of the fleet would reduce on-road tailpipe emissions by as much as 50%. Ammonia emissions have locally increased with the increasing fleet age.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号