首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30220篇
  免费   254篇
  国内免费   214篇
安全科学   869篇
废物处理   1101篇
环保管理   4258篇
综合类   4737篇
基础理论   8676篇
环境理论   22篇
污染及防治   7796篇
评价与监测   1773篇
社会与环境   1258篇
灾害及防治   198篇
  2022年   191篇
  2021年   215篇
  2020年   202篇
  2019年   273篇
  2018年   406篇
  2017年   392篇
  2016年   581篇
  2015年   503篇
  2014年   691篇
  2013年   2171篇
  2012年   863篇
  2011年   1276篇
  2010年   1050篇
  2009年   1050篇
  2008年   1274篇
  2007年   1361篇
  2006年   1207篇
  2005年   1020篇
  2004年   1016篇
  2003年   951篇
  2002年   945篇
  2001年   1244篇
  2000年   868篇
  1999年   558篇
  1998年   432篇
  1997年   439篇
  1996年   452篇
  1995年   492篇
  1994年   444篇
  1993年   403篇
  1992年   416篇
  1991年   377篇
  1990年   378篇
  1989年   413篇
  1988年   349篇
  1987年   302篇
  1986年   277篇
  1985年   311篇
  1984年   287篇
  1983年   324篇
  1982年   324篇
  1981年   274篇
  1980年   246篇
  1979年   270篇
  1978年   230篇
  1977年   197篇
  1976年   201篇
  1975年   192篇
  1974年   172篇
  1972年   198篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
211.
Grain Cd concentrations were determined in the wheat (Triticum aestivum L.) cultivars Soissons, Brigadier, and Hereward grown in 1994,1996, and 1999, respectively, in soils of a long-term field experiment to which sewage sludges contaminated with Zn, Cu, Ni, or Cr had previously been added. Soil pore water soluble Cd and free Cd2+ increased linearly with increasing total soil Cd (R2=0.82 and 0.84, respectively; P<0.001). Similarly, soil pore water free Cd2+ increased linearly with increasing soil pore water soluble Cd (R2=0.98; P<0.001). There was no evidence of a plateau in soil pore water Cd concentrations with increasing soil Cd concentrations. Grain Cd concentrations were significantly correlated with total soil Cd (P<0.001), soil pore water Cd (P<0.001), and free Cd2+ (P<0.001). A slight curvilinear relationship between grain Cd and soil Cd was apparent, but there was no plateau, even at the maximum soil Cd concentration of about 2.7 mg kg(-1). The relationship between soil pore water Cd and grain Cd was linear for all three cultivars. The slopes were in the order 1994 > 1996 > 1999, with more Cd being taken up into the grain by Soissons grown in 1994, and least by Hereward grown in 1999. For Soissons, Cd concentration in the grain greater than the EU limit (0.24 mg kg(-1) dry wt.) occurred at soil Cd less than the current UK limit of 3 mg kg(-1) for soils receiving sewage sludge. In contrast, for Brigadier and Hereward, grain Cd concentrations were near to and less than the EU limit, respectively, at soil Cd concentrations of 3 mg kg(-1).  相似文献   
212.
Mechanisms of nutrient attenuation in a subsurface flow riparian wetland   总被引:2,自引:0,他引:2  
Riparian wetlands are transition zones between terrestrial and aquatic environments that have the potential to serve as nutrient filters for surface and ground water due to their topographic location. We investigated a riparian wetland that had been receiving intermittent inputs of NO3- and PO4(3-) during storm runoff events to determine the mechanisms of nutrient attenuation in the wetland soils. Few studies have shown whether infrequent pulses of NO3- are sufficient to maintain substantial denitrifying communities. Denitrification rates were highest at the upstream side of the wetland where nutrient-rich runoff first enters the wetland (17-58 microg N2O-N kg soil(-1) h(-1)) and decreased further into the wetland. Carbon limitation for denitrification was minor in the wetland soils. Samples not amended with dextrose had 75% of the denitrification rate of samples with excess dextrose C. Phosphate sorption isotherms suggested that the wetland soils had a high capacity for P retention. The calculated soil PO4(3-) concentration that would yield an equilibrium aqueous P04(3-) concentration of 0.05 mg P L(-1) was found to be 100 times greater than the soil PO4(3-) concentration at the time of sampling. This indicated that the wetland could retain a large additional mass of PO4(3-) without increasing the dissolved P04(3-) concentrations above USEPA recommended levels for lentic waters. These results demonstrated that denitrification can be substantial in systems receiving pulsed NO3- inputs and that sorption could account for extensive PO4(3-) attenuation observed at this site.  相似文献   
213.
Hexachlorocyclohexanes (HCHs; alpha- and gamma-isomers), endosulfans (alpha- and beta-isomers and the sulfate residue), hexachlorobenzene (HCB), dichlorodiphenyltrichloroethane (DDTs), and polychlorobiphenyls (PCBs) were measured in waters from three European remote mountain lakes situated in the Alps, Pyrenees, and Caledonian mountains. Sampling encompassed both ice-free and ice-covered periods at different water column depths. High HCH concentrations were found in all lakes, those in the Alps and Pyrenees (990-2,900 pg/L) being among the highest recorded in continental waters. Endosulfans and endosulfan sulfate (120-1,150 pg/L) were the second major group of organochlorine contaminants, showing a remarkable stability upon atmospheric long-range transport. The concentrations of HCB, DDTs, and PCB (4-8, 0.6-16, and 26-110 pg/L, respectively) were low in comparison with other continental waters. Hexachlorocyclohexanes, endosulfans, and HCB were essentially found in the dissolved phase. Phase partitioning of the more hydrophobic compounds exhibited a dependence on temperature and water-suspended particles. Comparison between different sampling seasons and water depths indicated a remarkable concentration uniformity within lake, but major interlake differences. Normalization to turnover rates showed higher interlake similarity. Preferential accumulation of the less volatile compounds in the Alp lake and significant increase of baseline contributions of organochlorine compounds and residues in the Caledonian lake are also evidenced from these turnover rates.  相似文献   
214.
ABSTRACT: We investigated spatial and temporal relationships among surface and subsurface watershed attributes and stream nutrient concentrations in urbanizing Johnson Creek watershed in northern Oregon. We sampled stream water at eight urban and five nonurban locations from March 1998 through December 1999. We sampled eight wells distributed over the two primary aquifers in the watershed. Using a Geographic Information System (GIS), percentages of landuse attributes within a radius of 30, 91, and 152 m from each sample site were quantified. We analyzed relationships between (1) nutrient concentrations and percentage cover of different landuse attributes, and (2) nutrient concentrations and underlying hydrologic units. We did not find a significant relationship between ground water chemistry and stream water chemistry. We found elevated levels of phosphorus (P) concentrations correlated with urban landuse, while higher nitrogen (N) concentrations were correlated with nonurban (primarily agricultural) landuse. We concluded that elevated levels of N in nonurban areas of Johnson Creek watershed were associated with agricultural practices. We further concluded that urban development factors such as increases in storm drains, dry wells, and impermeable surfaces may be responsible for higher input of P to the stream in urbanizing areas of the Johnson Creek watershed.  相似文献   
215.
ABSTRACT: We tracked vegetation succession on a debris‐flow deposit in Oregon's Coast Range to examine factors influencing the development of riparian plant communities following disturbance. Plots were stratified across five areas of the deposit (bank slump, seep, upper and lower sediment wedge, log jam) the first growing season after debris flow. At six times during the next ten years we estimated cover of vascular plants and tallied density of woody plants. Plant colonization occurred within two years. Total cover increased two‐to seven‐fold on the five areas within three years. Red alder and salmonberry were the dominant species, although weedy herbs persisted where woody species were lacking. Ordination of cover data showed that the five areas remained floristically distinct over time, while undergoing similar shifts related to the increasing dominance of alder and salmonberry. Rapid height growth of alder allowed it to outcompete salmonberry and effectively capture most areas by the tenth year, even where sprouts from transported rhizomes gave salmonberry an early advantage. Our results suggest that successional patterns were influenced by substrate variability, species composition of initial colonizers, propagule sources and their distribution, and species life‐history traits such as growth rate, competitive ability, and shade tolerance.  相似文献   
216.
ABSTRACT: A regional water conservation system for drought management involves many uncertain factors. Water received from precipitation may stay on the ground surface, evaporate back into the atmosphere, or infiltrate into the ground. Reliable estimates of the amount of evapotranspiration and infiltration are not available for a large basin, especially during periods of drought. By applying a geographic information system, this study develops procedures to investigate spatial variations of unavailable water for given levels of drought severity. Levels of drought severity are defined by truncated values of monthly precipitation and daily streamflow to reflect levels of water availability. The greater the truncation level, the lower the precipitation or streamflow. Truncation levels of monthly precipitation are recorded in depth of water while those of daily streamflow are converted into monthly equivalent water depths. Truncation levels of precipitation and streamflow treated as regionalized variables are spatially interpolated by the unbiased minimum variance estimation. The interpolated results are vector values of precipitation and streamflow at a grid of points covering the studied basin. They are then converted into raster‐based values and expressed graphically. The image subtraction operation is used to subtract the image of streamflow from that of precipitation at their corresponding level of drought severity. It is done on a cell‐by‐cell basis resulting in new attribute values to form the spatial image representing a spatial distribution of potential water loss at a given level of drought severity.  相似文献   
217.
A Level III fugacity model was applied to characterize the transfer processes and environmental fate of benzo[a]pyrene in wastewater-irrigated areas of Tianjin, China. The physical-chemical properties and transfer parameters of benzo[a]pyrene were used in the model and the concentration distribution of benzo[a]pyrene in sediment, soil, water, air, fish, and crop compartments, as well as transfer fluxes across the compartments, were then derived under steady-state assumptions. The calculated results were compared with monitoring data for air, soil, water, and sediment collected from the literature. The results indicate that there was generally good agreement and the differences were within an order of magnitude for air, soil, and sediment. The concentration of benzo[a]pyrene in the ambient air in the area was very low with a majority present sorbed to aerosol. In the water compartment, approximately 70% of benzo[a]pyrene dissolved in water phase. Relatively high concentrations of the compound were found in the soil and sediment, with the soil serving as the dominant sink in the area. Benzo[a]pyrene, with a slow metabolic rate, was found to accumulate in fish in the area.  相似文献   
218.
A new technique is presented for the rapid, high-resolution identification and quantification of multiple trace gases above soils, at concentrations down to 0.01 microL L(-1) (10 ppb). The technique, selected ion flow tube mass spectrometry (SIFT-MS), utilizes chemical ionization reagent ions that react with trace gases but not with the major air components (N2, O2, Ar, CO2). This allows the real-time measurement of multiple trace gases without the need for preconcentration, trapping, or chromatographic separation. The technique is demonstrated by monitoring the emission of ammonia and nitric oxide, and the search for volatile organics, above containerized soil samples treated with synthetic cattle urine. In this model system, NH3 emissions peaked after 24 h at 2000 nmol m(-2) s(-1) and integrated to approximately 7% of the urea N applied, while NO emissions peaked about 25 d after urine addition at approximately 140 nmol m(-2) s(-1) and integrated to approximately 10% of the applied urea N. The monitoring of organics along with NH3 and NO was demonstrated in soils treated with synthetic urine, pyridine, and dimethylamine. No emission of volatile nitrogen organics from the urine treatments was observed at levels >0.01% of the applied nitrogen. The SIFT method allows the simultaneous in situ measurement of multiple gas components with a high spatial resolution of < 10 cm and time resolution <20 s. These capabilities allow, for example, identification of emission hotspots, and measurement of localized and rapid variations above agricultural and contaminated soils, as well as integrated emissions over longer periods.  相似文献   
219.
The transport of Ni2+ ions in a column, filled with porous media, was observed in three dimensions and time by magnetic resonance imaging (MRI) in a clinical scanner. For porous media we used glass beads or quartz sand in a saturated continuous flow mode. The magnetic moment of Ni2+ decreased the T1 relaxation time of 1H in aqueous solution. This concentration-dependent effect was used by a fast low angle shot (FLASH) MRI sequence for imaging the concentration of the dissolved ions. Since Ni2+ behaves as a conservative tracer under the chosen conditions, the tracer motion was representative for the water flow in the porous medium. Currently, we can achieve an isotropic spatial resolution of 1.5 mm and a temporal resolution of 170 s. The transport observation gives direct access to hydraulic flow properties of the porous media. The fluid flow velocity field was calculated by a fronttracking method and the statistical properties of the velocities were investigated. We also compared the experimental data with the three-dimensional particle tracking model PARTRACE, which uses the experimental flow field as input.  相似文献   
220.
Copper and zinc speciation in the solution of a soil-sludge mixture   总被引:2,自引:0,他引:2  
Only a small fraction of the transition metals content in sludge-amended soils is soluble, and yet this fraction is a major contributor to the mobility and bioavailability of the metals. The chemical species of zinc (Zn) and copper (Cu) in the soluble fractions of soil-sludge mixtures were characterized with respect to their charge, molecular weight, and stoichiometry using ion exchange resin and gel chromatography procedures. The change in the metals' species with time after sludge application was followed for 100 d. Copper in the water extracts of the sludge-sand mixtures was found almost exclusively in low molecular weight (below 1000 Da) complexes. Higher molecular weight (around 2500 Da) dissolved organic carbon (DOC) was present in the extracts as well, but this DOC fraction exhibited little complexation. Copper was present in the extracts mainly as negatively charged species throughout the incubation period, and zinc tended to form zwitter ions. As incubation progressed, the relative content of positively charged Zn in solution increased. Complexation capacity of DOC in sludge water extract, extrapolated to infinite dilution, was 8.75 mM Ca g(-1) DOC. When the complexation capacity of the extract is near saturation, a mean Cu-DOC complex can be defined. It consists of 1.9 Cu atoms attached to DOC species containing 5.6 C atoms. Thus, the organic Cu complexes consist primarily of about two Cu ions attached to DOC species containing only five or six C atoms. Amino acids and small peptides or polycarboxylic acids, such as citric acid, thus may be important complexing agents of the metal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号