首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   275篇
  免费   8篇
  国内免费   2篇
安全科学   1篇
废物处理   16篇
环保管理   88篇
综合类   44篇
基础理论   54篇
污染及防治   53篇
评价与监测   16篇
社会与环境   11篇
灾害及防治   2篇
  2023年   2篇
  2021年   1篇
  2019年   3篇
  2018年   7篇
  2017年   8篇
  2016年   4篇
  2015年   12篇
  2014年   6篇
  2013年   24篇
  2012年   13篇
  2011年   14篇
  2010年   9篇
  2009年   11篇
  2008年   10篇
  2007年   31篇
  2006年   12篇
  2005年   15篇
  2004年   8篇
  2003年   13篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   7篇
  1993年   5篇
  1992年   6篇
  1991年   2篇
  1990年   5篇
  1989年   2篇
  1987年   8篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1980年   1篇
  1979年   4篇
  1977年   1篇
  1976年   2篇
  1971年   1篇
  1966年   1篇
排序方式: 共有285条查询结果,搜索用时 15 毫秒
131.
132.
Rn-222 enters dwellings as a component of soil gas drawn from the soil by mass flow driven by the pressure difference between the house and soil beneath. In a site on Northampton Sand Ironstone (Aalenian), a preferred path of emanation (hotspot) was found. A difference of 63 Bq L–1 Rn-222 was recorded in July between this point and another 3 m away. Rn-222 in this hotspot shows 12% less variation annually than the surrounding rock. During winter, Rn-222 values within 1.6 m of the house were 44% lower than those at more than 4 m away. Rn-222 showed a 99.5% negative correlation with wind run, showing that on this soil wind pressure can significantly reduce radon in the soil at 500 mm depth. Rn-220 in soil gas correlated positively at the 99.5% level with grass and air temperatures. Rn-220 was not associated with the hotspot.  相似文献   
133.
The Kootenai River floodplain in Idaho, USA, is nearly disconnected from its main channel due to levee construction and the operation of Libby Dam since 1972. The decreases in flood frequency and magnitude combined with the river modification have changed the physical processes and the dynamics of floodplain vegetation. This research describes the concept, methodologies and simulated results of the rule-based dynamic floodplain vegetation model "CASiMiR-vegetation" that is used to simulate the effect of hydrological alteration on vegetation dynamics. The vegetation dynamics are simulated based on existing theory but adapted to observed field data on the Kootenai River. The model simulates the changing vegetation patterns on an annual basis from an initial condition based on spatially distributed physical parameters such as shear stress, flood duration and height-over-base flow level. The model was calibrated and the robustness of the model was analyzed. The hydrodynamic (HD) models were used to simulate relevant physical processes representing historic, pre-dam, and post-dam conditions from different representative hydrographs. The general concept of the vegetation model is that a vegetation community will be recycled if the magnitude of a relevant physical parameter is greater than the threshold value for specific vegetation; otherwise, succession will take place toward maturation stage. The overall accuracy and agreement Kappa between simulated and field observed maps were low considering individual vegetation types in both calibration and validation areas. Overall accuracy (42% and 58%) and agreement between maps (0.18 and 0.27) increased notably when individual vegetation types were merged into vegetation phases in both calibration and validation areas, respectively. The area balance approach was used to analyze the proportion of area occupied by different vegetation phases in the simulated and observed map. The result showed the impact of the river modification and hydrological alteration on the floodplain vegetation. The spatially distributed vegetation model developed in this study is a step forward in modeling riparian vegetation succession and can be used for operational loss assessment, and river and floodplain restoration projects.  相似文献   
134.
135.
136.
Abstract: Despite widespread interest, few sediment budgets are available to document patterns of erosion and sedimentation in developing watersheds. We assess the sediment budget for the Good Hope Tributary, a small watershed (4.05 km2) in Montgomery County, Maryland, from 1951‐1996. Lacking monitoring data spanning the period of interest, we rely on a variety of indirect and stratigraphic methods. Using regression equations relating sediment yield to construction, we estimated an upland sediment production of 5,700 m3 between 1951 and 1996. Regression equations indicate that channel cross‐sectional area is correlated with the extent of development; these relationships, when combined with historical land use data, suggest that upland sediment yield was augmented by 6,400 m3 produced by enlargement of first‐order and second‐order stream channels. We used dendrochronology to estimate that 4,000 m3 of sediment was stored on the floodplain from 1951‐1996. The sediment yield from the watershed, obtained by summing upstream contributions, totals 8,100 m3 of sediment, or 135 tons/km2/year. These results indicate that upland erosion, channel enlargement, and floodplain storage are all significant components of the sediment budget of our study area, and all three are approximately equal in magnitude. Erosion of “legacy” floodplain sediments originally deposited during poor agricultural practices of the 19th and early 20th Centuries has likely contributed between 0 and 20% of the total sediment yield, indicating that these remobilized deposits are not a dominant component of the sediment yield of our study area.  相似文献   
137.
Sedimentation basins and sediment traps are established methodologies for reducing sediment and other pollutants exiting small watersheds such as urban areas and construction sites. However, estimating the trap efficiency or designing a basin or trap to provide a pre-determined trap efficiency, is difficult, especially for dynamic conditions of water and sediment inflow. A conceptual dynamic model, called SedTrap, was developed that can be used to assess the varying removal efficiencies as a storm is routed through different sized basins or traps. The model uses the STELLA® modeling software from Iseesystems, Inc. to build a dynamic model to route both water and sediment through the system. Settling velocities are determined for a range of sediment sizes and temperatures using the Rubey-Watson law and compared to the more traditional Stokes’ law. The variation of efficiencies with time and by sediment size as the basin fills with sediment is also addressed. The results for the example used show a decrease in trap efficiencies with decreasing particle size, which leads to an increase in percent fine material of total sediment load at the outlet of the basin. This “fining” of the material coupled with the higher surface area per mass of the fine particles has implications for changes in the upstream-downstream concentrations of adsorbed contaminants.  相似文献   
138.
The Economics of Household Solid Waste Generation and Disposal   总被引:2,自引:0,他引:2  
We develop a household production model of waste management that explicitly incorporates many of the technical and behavioral elements germane to current regulatory and non-regulatory solid waste policy initiatives. Examination of first-order conditions shows the interaction among household preferences, these production options, and external prices and fees. A simplified simulation of our model illustrates these relationships, showing that household response elasticities can vary widely over common price ranges and that relatively large household welfare gains may be obtained by adopting curbside recycling and unit pricing programs.  相似文献   
139.
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号