首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   12篇
  国内免费   2篇
安全科学   8篇
废物处理   10篇
环保管理   59篇
综合类   52篇
基础理论   40篇
污染及防治   54篇
评价与监测   14篇
社会与环境   12篇
灾害及防治   7篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   8篇
  2019年   10篇
  2018年   12篇
  2017年   10篇
  2016年   10篇
  2015年   14篇
  2014年   11篇
  2013年   23篇
  2012年   17篇
  2011年   13篇
  2010年   10篇
  2009年   12篇
  2008年   15篇
  2007年   11篇
  2006年   7篇
  2005年   11篇
  2004年   6篇
  2003年   7篇
  2002年   6篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1982年   1篇
  1981年   2篇
排序方式: 共有256条查询结果,搜索用时 78 毫秒
101.
Recent research has suggested that the fate of biologically active compounds (BACs) originating from point sources such as wastewater treatment plants is fundamentally different from that of similar compounds released from nonpoint sources through runoff from agricultural landscapes. Downstream from wastewater treatment plants, BACs will degrade via a variety of mechanisms; however, their concentration in the water adjacent to the point of discharge may not decrease over time, as the compounds are continually released. In contrast, in agricultural systems, BACs are episodically introduced to surface water during snowmelt and rainstorm events, and under these circumstances, may be found in water for only hours or days after a storm event. Recent research in our laboratories as well as others, has suggested that sediments play an important role in the persistence of herbicides and steroids in watersheds after nonpoint source loading events. Conceptually, the sediment serves as both a sink and a source, equilibrating with BACs during storm events then slowly releasing them back into the water over time, long after the initial pulse of chemicals has moved downstream.  相似文献   
102.
Phytoremediation is a promising new method that uses green plants to cleanse soil and water contaminated with organic or inorganic pollutants. In this study, the uptake and transformation of sodium perchlorate (NaClO4) using four vascular plant species were examined in batch experiments. The species include two trees, cabbage gum (Eucalyptus amplifolia) and eastern cottonwood (Populus deltoides), a herbaceous wetland plant, perennial glasswort (Salicornia virginica), and a herbaceous aquatic plant, waterweed (Elodea canadensis). Perchlorate was depleted from solution in the presence of all but one species (waterweed). Depletion was calculated as a first‐order kinetics reaction with k values in the range of 0–0.013 per day and accumulation of perchlorate was between 3.2 and 3138 mg/kg. Perchlorate and transformation metabolites (chlorate, chlorite, chloride) were observed in all plant tissues (e.g., roots, stems, leaves) analyzed. Results suggest that significant influences on perchlorate uptake include: (1) plant species present, (2) concentration of perchlorate, (3) sand versus hydroponic treatments, (4) the presence or absence of plant nutrients or competing ions, (5) stage of plant maturity.  相似文献   
103.
Phanogenia gracilis sensu lato is a shallow-water crinoid distributed throughout the Indo-western Pacific. The taxonomy of P. gracilis s.l. is clouded by the presence of two distinct morphotypes, each differing in morphology and ecology. The goal was to determine the taxonomic status of P. gracilis s.l. using partial gene sequences of two mitochondrial DNA genes, cytochrome oxidase c subunit I and NADH dehydrogenase subunit II, in conjunction with morphological and ecological data. The molecular phylogenies revealed three lineages separated by 5.0–6.6% corrected genetic distance, which is consistent with the genetic distances among other echinoderm species. Neither morphotype was monophyletic, nor was any examined morphological character exclusive to any one lineage. Discriminant function analysis (DFA) of the morphological and ecological data yielded significant results when grouping P. gracilis by morphotype and by clades recovered in the phylogenetic analyses, but grouping by sample locality was rejected. Although DFA results of grouping by clade were significant, jackknife support was weak, while only correctly grouping specimens by their respective clades 65% of the time. The results suggest the possibility of cryptic species, but additional molecular and morphological data are needed to confirm this. This study demonstrates the need to reevaluate the taxonomy of crinoid species and their respective diagnostic characters.  相似文献   
104.
Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960–2005) and future climate period (2006–2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO2 emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting APSs to future climate change is advantageous (i.e., NFI with adaptation is superior to NFI without adaptation based on SERF), in six of the nine cases in which adaptation is advantageous, NFI with adaptation in the future climate period is inferior to NFI in the historical climate period. Therefore, adaptation of APSs to future climate change in Flathead Valley is insufficient to offset the adverse impacts on NFI of such change.  相似文献   
105.
Changing unsustainable natural resource use in agricultural landscapes is a complex social–ecological challenge that cannot be addressed through traditional reductionist science. More holistic and inclusive (or transdisciplinary) processes are needed. This paper describes a transdisciplinary project for natural resource management planning in two regions (Eyre Peninsula and South Australian Murray-Darling Basin) of southern Australia. With regional staff, we reviewed previous planning to gain an understanding of the processes used and to identify possible improvement in plan development and its operation. We then used an envisioning process to develop a value-rich narrative of regional aspirations to assist stakeholder engagement and inform the development of a land use management option assessment tool called the landscape futures analysis tool (LFAT). Finally, we undertook an assessment of the effectiveness of the process through semi-structured stakeholder interviews. The planning process review highlighted the opinion that the regional plans were not well informed by available science, that they lacked flexibility, and were only intermittently used after publication. The envisioning process identified shared values—generally described as a trust, language that is easily understood, wise use of resources, collaboration and inclusiveness. LFAT was designed to bring the best available science together in a form that would have use in planning, during community consultation and in assessing regional management operations. The LFAT provided spatially detailed but simple models of agricultural yields and incomes, plant biodiversity, weed distribution, and carbon sequestration associated with future combinations of climate, commodity and carbon prices, and costs of production. Stakeholders were impressed by the presentation and demonstration results of the software. While there was anecdotal evidence that the project provided learning opportunities and increased understanding of potential land use change associated with management options under global change, the direct evidence of influence in the updated regional plan was limited. This project had elements required for success in transdisciplinary research, but penetration seems limited. Contributing factors appear to be a complexity of climate effects with economic uncertainty, lack of having the project embedded in the plan revision process, limited continuity and capacity of end users and limited after project support and promotion. Strategies are required to minimise the controlling influence that these limitations can have.  相似文献   
106.
Ozone-sensitive and -tolerant individuals of cutleaf coneflower (Rudbeckia laciniata L.) were compared for their gas exchange characteristics and total non-structural carbohydrates at Purchase Knob, a high elevation site in Great Smoky Mountains National Park, USA. Photosynthesis and stomatal conductance decreased with increased foliar stipple. Sensitive plants had lower photosynthetic rates for all leaves, except the very youngest and oldest when compared to tolerant plants. Stomatal conductance decreased with increasing leaf age, but no ozone-sensitivity differences were found. Lower leaves had less starch than upper ones, while leaves on sensitive plants had less than those on tolerant plants. These results show that ambient levels of ozone in Great Smoky Mountains National Park can adversely affect gas exchange, water use efficiency and leaf starch content in sensitive coneflower plants. Persistence of sensitive genotypes in the Park may be due to physiological recovery in low ozone years.  相似文献   
107.
As natural resource management agencies and conservation organizations seek guidance on responding to climate change, myriad potential actions and strategies have been proposed for increasing the long-term viability of some attributes of natural systems. Managers need practical tools for selecting among these actions and strategies to develop a tailored management approach for specific targets at a given location. We developed and present one such tool, the participatory Adaptation for Conservation Targets (ACT) framework, which considers the effects of climate change in the development of management actions for particular species, ecosystems and ecological functions. Our framework is based on the premise that effective adaptation of management to climate change can rely on local knowledge of an ecosystem and does not necessarily require detailed projections of climate change or its effects. We illustrate the ACT framework by applying it to an ecological function in the Greater Yellowstone Ecosystem (Montana, Wyoming, and Idaho, USA)-water flows in the upper Yellowstone River. We suggest that the ACT framework is a practical tool for initiating adaptation planning, and for generating and communicating specific management interventions given an increasingly altered, yet uncertain, climate.  相似文献   
108.
Understanding the responses of tundra systems to global change has global implications. Most tundra regions lack sustained environmental monitoring and one of the only ways to document multi-decadal change is to resample historic research sites. The International Polar Year (IPY) provided a unique opportunity for such research through the Back to the Future (BTF) project (IPY project #512). This article synthesizes the results from 13 papers within this Ambio Special Issue. Abiotic changes include glacial recession in the Altai Mountains, Russia; increased snow depth and hardness, permafrost warming, and increased growing season length in sub-arctic Sweden; drying of ponds in Greenland; increased nutrient availability in Alaskan tundra ponds, and warming at most locations studied. Biotic changes ranged from relatively minor plant community change at two sites in Greenland to moderate change in the Yukon, and to dramatic increases in shrub and tree density on Herschel Island, and in subarctic Sweden. The population of geese tripled at one site in northeast Greenland where biomass in non-grazed plots doubled. A model parameterized using results from a BTF study forecasts substantial declines in all snowbeds and increases in shrub tundra on Niwot Ridge, Colorado over the next century. In general, results support and provide improved capacities for validating experimental manipulation, remote sensing, and modeling studies.  相似文献   
109.
Granular activated carbon (GAC) exhaustion rates on pulp and paper effluent from South East Australia were found to be a factor of three higher (3.62 cf. 1.47 kg m−3) on Kraft mills compared to mills using Thermomechanical pulping supplemented by Recycled Fibre (TMP/RCF). Biological waste treatment at both mills resulted in a final effluent COD of 240 mg L−1. The dissolved organic carbon (DOC) was only 1.2 times higher in the Kraft effluent (70 vs. 58 mg L−1), however, GAC treatment of Kraft and TMP/RCF effluent was largely different on the DOC persisted after biological treatment. The molecular mass (636 vs. 534 g mol−1) and aromaticity (5.35 vs. 4.67 L mg−1 m−1) of humic substances (HS) were slightly higher in the Kraft effluent. The HS aromaticity was decreased by a factor of 1.0 L mg−1 m−1 in both Kraft and TMP/RCF effluent. The molecular mass of the Kraft effluent increased by 50 g mol−1 while the molecular mass of the TMP/RCF effluent was essentially unchanged after GAC treatment; the DOC removal efficiency of the GAC on Kraft effluent was biased towards the low molecular weight humic compounds. The rapid adsorption of this fraction, coupled with the slightly higher aromaticity of the humic components resulted in early breakthrough on the Kraft effluent. Fluorescence excitation-emission matrix analysis of the each GAC treated effluent indicated that the refractory components were higher molecular weight humics on the Kraft effluent and protein-like compounds on the TMP/RCF effluent. Although the GAC exhaustion rates are too high for an effective DOC removal option for biologically treated pulp and paper mill effluents, the study indicates that advanced organic characterisation techniques can be used to diagnose GAC performance on complex effluents with comparable bulk DOC and COD loads.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号