首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
废物处理   10篇
环保管理   4篇
基础理论   5篇
污染及防治   10篇
评价与监测   1篇
社会与环境   1篇
  2018年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2009年   3篇
  2008年   1篇
  2006年   3篇
  2005年   5篇
  2004年   5篇
  2001年   1篇
  1996年   1篇
  1992年   3篇
  1984年   1篇
  1975年   1篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
11.
Providing an accurate estimate of the dry component of N deposition to low N background, semi-natural habitats, such as bogs and upland moors dominated by Calluna vulgaris is difficult, but essential to relate nitrogen deposition to effects in these communities. To quantify the effects of NH3 inputs to moorland vegetation growing on a bog at a field scale, a field release NH3 fumigation system was established at Whim Moss (Scottish Borders) in 2002. Gaseous NH3 from a line source was released along of a 60 m transect, when meteorological conditions (wind speed >2.5 m s–1 and wind direction in the sector 180–215°) were met, thereby providing a profile of decreasing NH3 concentration with distance from the source. In a complementary study, using a NH3 flux chamber system, the relationships between NH3 concentrations and cuticular resistances were quantified for a range of NH3 concentrations and micrometeorological conditions for moorland vegetation. Cuticular resistances increased with NH3 concentration from 11 s m–1 at 3.0 g m–3 to 30 s m–1 at 30 g m–3. The NH3 concentration data and the concentration-dependent canopy resistance are used to calculate NH3 deposition taking into account leaf surface wetness. The implications of using an NH3 concentration-dependent cuticular resistance and the importance for refining critical loads are discussed.  相似文献   
12.
Critical N loads for ombrotrophic bogs, which often contain rare and N-sensitive plants (especially those in lower plant groups: lichens, mosses and liverworts), are based on very few experimental data from measured, low background N deposition areas. Additionally the relative effects of reduced versus oxidised N are largely unknown. This paper describes an automated field exposure system (30 km S. of Edinburgh, Scotland) for treating ombrotrophic bog vegetation with fine droplets of oxidised N (NaNO3) and reduced N (NH4Cl). Whim Moss exists in an area of low ambient N deposition (ca. 8 kg N ha–1 y–1), the sources and quantification of which are described. The wet N treatment system is run continuously, and is controlled/activated by wind speed and rainfall to provide a unique simulation of real world treatment patterns (no rain=no treatment). Simulated precipitation is supplied at ionic concentrations below4mMin rainwater collected on site. Treatments provide a replicated dose response to 16, 32 and 64 kg N ha–1 y–1 adjusted for ambient deposition (8 kg N ha–1 y–1). The 16 and 64 kg N ha–1 y–1 are duplicated with a P+K supplement. Baseline soil chemistry and foliar nutrient status was established for all 44 plots for Calluna vulgaris, Sphagnum capillifolium, Hypnum jutlandicum and Cladonia portentosa.  相似文献   
13.
The soil in a drained fjord area, reclaimed for arable farming, produced N2O mainly at 75–105 cm depth, just above the ground water level. Surface emissions of N2O were measured from discrete small areas by closed and open-flow chamber methods, using gas chromatographic analysis and over larger areas by integrative methods: flux gradient (analysis by FTIR), conditional sampling (analysis by TDLAS), and eddy covariance (analysis by TDLAS). The mean emission of N2O as determined by chamber procedures during a 9-day campaign was 162–202 μg N2ONm−2h−1 from a wheat stubble and 328–467 μg N2ONm−2 h−1 from a carrot field. The integrative approaches gave N2O emissions of 149–495 μg N2ONm−2 h−1, i.e. a range similar to those determined with the chamber methods. Wind direction affected the comparison of chamber and integrative methods because of patchiness of the N2O emission over the area. When a uniform area with a single type of vegetation had a dominant effect on the N2O gradient at the sampling mast, the temporal variation in N2O emission determined by the flux gradient/FTIR method and chamber methods was very similar, with differences of only 18% or less in mean N2O emission, well below the variation encountered with the chamber methods themselves. A detailed comparison of FTIR gradient and chamber data taking into account the precise emission footprint showed good agreement. It is concluded that there was no bias between the different approaches used to measure the N2O emission and that the precision of the measurements was determined by the spatial variability of the N2O emission at the site and the variability inherent in the individual techniques. These results confirm that measurements of N2O emissions from different ecosystems obtained by the different methods can be meaningfully compared.  相似文献   
14.
In various months of the years between 1960 and 1972, the R.R.S. “Discovery II” and R.R.S. “Discovery” carried out a number of echo-surveys in the North-eastern Atlantic Ocean between Latitudes 12° and 62°N, and from the European and African coasts to a longitude of approximately 29°W. The prime objective was to acquire data on sea-floor topography. In addition, numerous echo-traces of biological scattering present in midwater between depths of approximately 35 and 460 m were obtained. The traces were of variable quality, but were considered suitable for a preliminary evaluation of the scattering mainly as a basis for further investigation. The scattering recorded in daytime was broadly divisible into three types:
  1. Diffuse layers, which were probably due to dispersed single fish. These were not analysed further.
  2. Very small discrete echoes, mostly derived from single fish and very small shoals. These were mapped to show geographical regions of greater abundance.
  3. Larger discrete echoes, most of which were almost certainly given by fish shoals. These were analysed in detail and information obtained on depth distribution, shoal density, geographical distribution and relative abundance. Small and moderate-sized shoals were found to be very numerous in spring and summer in oceanic water to the West and North-west of the British Isles. Large numbers of shoals of various sizes were also observed at various time of the year in the Bay of Biscay and near certain parts of the European and African Continental Shelf, near certain seamounts, and near islands such as the Azores, Madeira, and the Cape Verde Islands. In general, shoals appeared to be relatively sparse in the more southerly temperate and subtropical regions of the open ocean. The depth distribution of shoals in open water varied greatly but, on average, the maximum daytime depth of those in the more southerly area of the survey was slightly greater than that of those in the more northerly area. Shoal size also varied, shoals to the north of Latitude 50°N were on average slightly smaller than those detected in southerly regins. Possible identification of the fish is discussed.
  相似文献   
15.
The objective of the study was to measure the size dependence of cloudwater deposition and associated average ionic fluxes to vegetated surfaces. Measurements were made over a forest canopy at Dunslair heights in south Scotland and a moorland site, Great Dun Fell, in northern England. Measurements were made using the gradient and eddy correlation techniques. Eddy correlation measurements were made using an ultrasonic anemometer, a Knollenberg forward scattering spectrometer probe (to measure liquid water fluxes and fluxes of droplets in 1 microm size intervals) and a GSI particulate volume monitor (to measure liquid-water fluxes). Measurements were made at Great Dun Fell of the size dependence of droplet deposition velocity, using the gradient technique with two Knollenberg probes. Simultaneous gradient and eddy correlation measurements were also made at Great Dun Fell of average cloud-water fluxes, together with chemical analysis of cloud water composition, using a continuous analysis system. At Dunslair Heights, eddy correlation measurements were made using both the Knollenberg and Gerber Scientific Instruments (GSI) probes, while simultaneous gradient measurements using two GSI probes were also attempted. Samples of cloud water were collected at Dunslair Heights, using passive string collectors for chemical analysis by ion chromatography. The major findings of the study were: 1. The droplet deposition velocities measured by the two techniques were similar. 2. The deposition velocities were a strong function of droplet size. Considerable resistance to deposition was evident for droplets of less than 5 microm radius. Deposition velocities for particles from about 6 to 8 microm exceeded those for momentum. 3. Except when the droplets were very small or the winds very light, bulk cloud-water deposition velocities were about 80% or more of the momentum deposition velocities to forests.  相似文献   
16.
Fluxes of NO, NO2 and O3 were determined over a drained marshland pasture in south-east England by using flux-gradient techniques. Nitric oxide was found to be emitted at rates of up to 40 ng m(-2) s(-1), the rate of emission being related to the magnitude of the eddy diffusivity. Nitrogen dioxide deposited at rates of up to 90 ng m(-2) s(-1) under the control of stomatal resistance, a clear diurnal cycle being observed. Minimum canopy resistance was of the order of 80 s m(-1). Ozone deposition was also controlled by stomatal resistance, the minimum canopy resistance being around 100 s m(-1) and fluxes reaching a maximum of 220 ng m(-2) s(-1). Corrections made to NO and NO2 fluxes to compensate for chemical reactions showed flux divergences of the order of 30% for NO and NO2, but these were not statistically significantly different from the measured fluxes. The pasture was found to be a net sink for nitrogen in the form of NOx.  相似文献   
17.
The binding efficiency of chitosan samples for Ag(+), Cd(2+), Cu(2+), Pb(2+) and Zn(2+) has been evaluated in order to consider their application to remediate metal contaminated soil and water. The sorption behaviour of metal ions was assessed using a batch technique at different contact time and initial metal concentration with different background electrolytes. The kinetics followed a pseudo-second-order model, while the equilibrium data correlated well with the Freundlich and Langmuir isotherm models. For example, the maximum sorption capacity (Q) for chitosan was estimated as 1.93 mmol/g for Ag(+), 1.61 mmol/g for Cu(2+), 0.94 mmol/g for Zn(2+), 0.72 mmol/g for Cd(2+) and 0.64 mmol/g for Pb(2+). Covalent interaction between metal ions and functional groups (amino and hydroxyl) of the chitosans was the main binding mechanism. Ion exchange is not an important process. Chitosan and cross-linked chitosans were able to bind metal ions in the presence of K(+), Cl(-) and NO(3)(-). The nature of Cl(-) and NO(3)(-) ions did not affect Zn(2+) binding by the chitosans. Even at 11x dilution, the chitosans were able to retain metal ions on their surfaces.  相似文献   
18.
The aim of this study was to characterise and quantify the fungal fragment propagules derived and released from several fungal species (Penicillium, Aspergillus niger and Cladosporium cladosporioides) using different generation methods and different air velocities over the colonies. Real time fungal spore fragmentation was investigated using an Ultraviolet Aerodynamic Particle Sizer (UVASP) and a Scanning Mobility Particle Sizer (SMPS). The study showed that there were significant differences (p < 0.01) in the fragmentation percentage between different air velocities for the three generation methods, namely the direct, the fan and the fungal spore source strength tester (FSSST) methods. The percentage of fragmentation also proved to be dependent on fungal species. The study found that there was no fragmentation for any of the fungal species at an air velocity ≤0.4 m s?1 for any method of generation. Fluorescent signals, as well as mathematical determination also showed that the fungal fragments were derived from spores. Correlation analysis showed that the number of released fragments measured by the UVAPS under controlled conditions can be predicted on the basis of the number of spores, for Penicillium and A. niger, but not for C. cladosporioides. The fluorescence percentage of fragment samples was found to be significantly different to that of non-fragment samples (p < 0.0001) and the fragment sample fluorescence was always less than that of the non-fragment samples. Size distribution and concentration of fungal fragment particles were investigated qualitatively and quantitatively, by both UVAPS and SMPS, and it was found that the UVAPS was more sensitive than the SMPS for measuring small sample concentrations, whilethe results obtained from the UVAPS and SMAS were not identical for the same samples.  相似文献   
19.
Renewed interest in quantifying greenhouse gas emissions from soil has led to an increase in the application of chamber-based flux measurement techniques. Despite the apparent conceptual simplicity of chamber-based methods, nuances in chamber design, deployment, and data analyses can have marked effects on the quality of the flux data derived. In many cases, fluxes are calculated from chamber headspace vs. time series consisting of three or four data points. Several mathematical techniques have been used to calculate a soil gas flux from time course data. This paper explores the influences of sampling and analytical variability associated with trace gas concentration quantification on the flux estimated by linear and nonlinear models. We used Monte Carlo simulation to calculate the minimum detectable fluxes (α = 0.05) of linear regression (LR), the Hutchinson/Mosier (H/M) method, the quadratic method (Quad), the revised H/M (HMR) model, and restricted versions of the Quad and H/M methods over a range of analytical precisions and chamber deployment times (DT) for data sets consisting of three or four time points. We found that LR had the smallest detection limit thresholds and was the least sensitive to analytical precision and chamber deployment time. The HMR model had the highest detection limits and was most sensitive to analytical precision and chamber deployment time. Equations were developed that enable the calculation of flux detection limits of any gas species if analytical precision, chamber deployment time, and ambient concentration of the gas species are known.  相似文献   
20.
Copper sulfate (CuSO4) is applied periodically to commercial channel catfish (Ictalurus panctatus) ponds as an algicide or parasiticide. Current understanding of the chemistry of copper in soil-water systems suggests that copper may accumulate in pond sediments, although the forms and potential bioavailability of copper in catfish pond sediments are not known. This study investigated the accumulation and distribution of copper in the sediment of catfish ponds receiving periodic additions of CuSO4.5H2O. All ponds were constructed in Sharkey (very-fine, smectitic, thermic Chromic Epiaquert) soil. Nine 0.40-ha ponds received 59 applications of 2.27 kg CuSO4.5H2O per application per pond over 3 yr; no CuSO4.5H2O applications were made to nine additional ponds. Total Cu concentration in the sediments of CuSO4.5H2O-amended catfish ponds (172.5 mg kg(-1)) was four to five times higher than that in the sediments of nonamended ponds (36.1 mg kg(-1)). Copper accumulated in catfish pond sediments at a rate of 41 microg kg(-1) dry sediment for each 1 kg ha(-1) of CuSO4. 5H2O applied to ponds. Copper in the sediments of amended ponds was mainly in the organic matter-bound (30.7%), carbonate-bound (31.8%), and amorphous iron oxide-bound (22.1%) fractions with a considerable fraction (3.4%; 3 to 8 mg kg(-1)) in soluble and exchangeable fractions. This indicates that Cu accumulates differentially in various fractions, with proportionally greater initial accumulation in potentially bioavailable forms. However, toxicity bioassays with amphipods (Hyallela azteca) and common cattail (Typha latifolia L.) indicated that the effect of exposure to amended or nonamended pond sediments was not different.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号