首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
安全科学   6篇
废物处理   1篇
环保管理   2篇
综合类   2篇
基础理论   6篇
污染及防治   15篇
评价与监测   1篇
社会与环境   2篇
  2022年   1篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   5篇
  2009年   4篇
  2008年   2篇
  2007年   5篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  1995年   1篇
  1993年   2篇
排序方式: 共有35条查询结果,搜索用时 31 毫秒
11.
The main objective of the study was to calculate net atmospheric impacts for wood production and utilization in Finnish boreal forest conditions. Net atmospheric impacts were calculated by comparing net CO2 exchanges of the wood production and utilization to the reference management regime. Net CO2 exchanges were simulated with a life cycle assessment (LCA) tool for a Scots pine (Pinus sylvestris L.) stand (MT, Myrtillys-type) in central Finland (Joensuu region, 62°39 N, 29°37 E) over two consecutive rotation periods (100?+?100 years/200 years). Net atmospheric impacts were calculated both for sawn timber and pulpwood, and expressed in kgCO2m?3. According to the results, the production of pulp and sawn timber produced emissions of 0.20 and 0.59 kgCO2m?3 over the 200-year period, respectively, when the unmanagement regime was used as the reference management regime. When 50 % of the processing waste of timber was accounted as an instant emission to the atmosphere, the atmospheric impact increased to 0.55 kgCO2m?3 in pulpwood and to 1.27 kgCO2m?3 in sawn timber over the 200 year period. When turnover rates of sawn timber in the technosystem were decreased by 30 % and the share of energy use was decreased to 30 %, the atmospheric impact decreased by 17 % and 4 % for pulpwood and sawn timber, respectively, compared to the default wood degradation and energy use of 50 %. The utilized LCA approach provided an effective tool for approaching net atmospheric impacts originating from the ecosystem carbon (C) flows and variable wood utilization. Taking the ecosystem production and utilization of wood (i.e. degradation of technosystem C stock) into account, in terms of net CO2 exchange, the mitigation possibilities of wood compared to other products can be accounted for more precisely in the future and C sequestration credited more specifically for a certain wood product.  相似文献   
12.
In this paper, the model film approach was used to investigate the structural features and humidity induced changes of the etherified xylan derivatives by using surface sensitive methods. Two routes to modify the birch xylan to generate either cross-linking xylan or more hydrophobic xylan were mastered via allylation and butylation, respectively. Thin nanometer scale model films were prepared by spin-coating and the films were further treated by UV-radical treatment and heat. The structural changes and wetting behaviour of the films before and after the post-treatment procedures were studied using atomic force microscopy and water contact angle measurements. In addition, the water vapour uptake of the xylan derivative films was monitored using quartz crystal microbalance with dissipation (QCM-D) equipped with the humidity module. With the QCM-D, the mass uptake due to the water vapour binding was defined. Simultaneously the changes in the viscoelastic properties of the films when subjected to different relative humidity conditions were determined. We show that the water sensitivity and wetting behaviour of the water soluble xylan derivatives can be altered by cross-linking the film structure and through the molecular rearrangements. Cross-linking and the conformational rearrangements of the allylated xylan reduced the water vapour uptake ability approximately 80?%. Butylated xylan as being a more hydrophobic derivative showed lower ability to uptake water vapour when compared to more hydrophilic xylan derivative. This ability was even further reduced after the post-treatments mainly due to the reassembly of the hydrophobic groups.  相似文献   
13.
Microbial growth in buildings may evoke respiratory and other symptoms in the occupants and promote decay of construction materials. The decay in wood is usually caused by dry-rot fungus, leading to the decomposition of cellulose and lignin. There are also some mold fungi and bacteria that can use wood as a nutrient. In this study, two trained dogs were used to detect microbial growth present in buildings. The rot fungi Serpula lacrymans, Coniophora puteana and Antrodia sinuosa were used in the training. In addition to decay samples, pieces of healthy birch, pine and imbued wood were used as controls. Another experiment was made using bacteria (Streptomyces sp.). In these experiments, a total of 100 decay, 75 control and 25 bacteria samples were used. The dogs detected 75% of the decay and 60% of the bacteria samples. Some (0-24%) control samples were also expressed as positive. Since the dogs identified also the bacteria samples without any specific training, a new test with some mold strains (Cladosporium, Botrytis, Trichoderma, Penicillium, Aspergillus) was carried out. The dogs found all the decay, mold and bacteria samples but only one sample of healthy wood. The use of dogs to detect mold or decay damage appears to have high specificity and high positive predictive value, but low sensitivity.  相似文献   
14.
This job-related experiment investigated physiological strain in subjects wearing impermeable chemical protective suit systems (CPSSs) weighing about 28 kg. Two types of CPSSs were studied: the self-contained breathing apparatus was carried either inside or outside the suit. Eight healthy and physically fit male firefighter instructors aged 32 to 45 years volunteered for the study. The test drill, performed at a dry, windless ta of 40 degrees C, was divided into 2 consecutive work sessions of 14.5 min (a 20-min rest between) including typical operational work tasks. Considerable thermal and maximal cardiovascular strain and intense subjective discomfort measured in the firefighters emphasize the need to limit working time in hot conditions to only 10-12 min while wearing CPSSs. The present results indicate that the exceptionally heavy physical load and psychological stress during operations in chemical emergencies must be considered in the assessment of the cardiovascular capacity of ageing firefighters using CPSSs.  相似文献   
15.
Flue gas emissions of wood and heavy fuel oil (HFO) fired district heating units of size range 4–15 MW were studied. The emission measurements included analyses of particle mass, number and size distributions, particle chemical compositions and gaseous emissions. Thermodynamic equilibrium calculations were carried out to interpret the experimental findings.In wood combustion, PM1 (fine particle emission) was mainly formed of K, S and Cl, released from the fuel. In addition PM1 contained small amounts of organic material, CO3, Na and different metals of which Zn was the most abundant. The fine particles from HFO combustion contained varying transient metals and Na that originate from the fuel, sulphuric acid, elemental carbon (soot) and organic material. The majority of particles were formed at high temperature (>800 °C) from V, Ni, Fe and Na. At the flue gas dew point (125 °C in undiluted flue gas) sulphuric acid condensed forming a liquid layer on the particles. This increases the PM1 substantially and may lead to partial dissolution of the metallic cores.Wood-fired grate boilers had 6–21-fold PM1 and 2–23-fold total suspended particle (TSP) concentrations upstream of the particle filters when compared to those of HFO-fired boilers. However, the use of single field electrostatic precipitators (ESP) in wood-fired grate boilers decreased particle emissions to same level or even lower as in HFO combustion. On the other hand, particles released from the HFO boilers were clearly smaller and higher in number concentration than those of wood boilers with ESPs. In addition, in contrast to wood combustion, HFO boilers produce notable SO2 emissions that contribute to secondary particle formation in the atmosphere. Due to vast differences in concentrations of gaseous and particle emissions and in the physical and chemical properties of the particles, HFO and wood fuel based energy production units are likely to have very different effects on health and climate.  相似文献   
16.
Sediment trap material was collected during May–December in the period 1996–2008 in three coastal areas and four open sea stations in the Finnish territory of the Baltic Sea. The highest sedimentation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) with a typical source-related congener profile from chlorophenol production dominated by highly chlorinated dibenzofurans was found close to a historical source in the Kymijoki estuary. This was an order of magnitude higher than in other river estuaries and two orders of magnitude higher than in the open sea stations. The sedimentation of polychlorinated biphenyls (PCBs) was also higher in river estuaries than in other areas. No significant decrease over a 12 year period of monitoring was found in concentration or in sedimentation in the Kymijoki estuary. In the western Gulf of Finland, the Archipelago Sea and the Gulf of Bothnia, the dominating congeners, calculated as toxic equivalent (TEQ) in sedimentation were 1, 2, 3, 7, 8-PeCDD and 2, 3, 4, 7, 8-PeCDF, often reported as the main congeners in deposition.  相似文献   
17.
Eutrophication of the Baltic Sea has potentially increased the frequency and magnitude of cyanobacteria blooms. Eutrophication leads to increased sedimentation of organic material, increasing the extent of anoxic bottoms and subsequently increasing the internal phosphorus loading. In addition, the hypoxic water volume displays a negative relationship with the total dissolved inorganic nitrogen pool, suggesting greater overall nitrogen removal with increased hypoxia. Enhanced internal loading of phosphorus and the removal of dissolved inorganic nitrogen leads to lower nitrogen to phosphorus ratios, which are one of the main factors promoting nitrogenfixing cyanobacteria blooms. Because cyanobacteria blooms in the open waters of the Baltic Sea seem to be strongly regulated by internal processes, the effects of external nutrient reductions are scale-dependent. During longer time scales, reductions in external phosphorus load may reduce cyanobacteria blooms; however, on shorter time scales the internal phosphorus loading can counteract external phosphorus reductions. The coupled processes inducing internal loading, nitrogen removal, and the prevalence of nitrogen-fixing cyanobacteria can qualitatively be described as a potentially self-sustaining "vicious circle." To effectively reduce cyanobacteria blooms and overall signs of eutrophication, reductions in both nitrogen and phosphorus external loads appear essential.  相似文献   
18.
Policy-makers are increasingly recognising that the promotion of more sustainable consumption patterns is an indispensable prerequisite for achieving sustainable development in the long term. Policy documents and action plans have been published, and a wide array of policy instruments has been implemented with the aim of reducing the environmental and social burdens of consuming goods and services. But what are the latest trends and innovative approaches in sustainable consumption (SC) policies? What could be learnt for future policy-making? Based on an overview of European policy instruments and several case studies, the paper discusses instructive examples of SC policy instruments, in particular the Danish information campaign "One Tonne Less", the Dutch tax incentive scheme "Green Funds", the British "Red/Green calculator", and the pan-European internet platform "TopTen". Important features of novel policies — such as adaptability and collective action — are identified, and recommendations for future policies are presented. The recommendations refer to the foundation of SC policies, to the specific approach taken, to the applied instruments, and to the proper documentation of the implemented policies.  相似文献   
19.
This work was undertaken to investigate the usefulness of diisocyanate-related protein adducts in blood samples as biomarkers of occupational exposure to toluene diisocyanate (TDI; 2,4- and 2,6-isomers) and 4,4'-methylenediphenyl diisocyanate (MDI). Quantification of adducts as toluene diamines (TDAs) and methylenedianiline (MDA) was performed on perfluoroacylated derivatives by gas chromatography-mass spectrometry (GC-MS/MS) in negative chemical ionisation mode. TDI-derived adducts were found in 77% of plasma and in 59% of globin samples from exposed workers manufacturing flexible polyurethane foam. The plasma levels ranged from 0.003 to 0.58 nmol mL(-1) and those in globin from 0.012 to 0.33 nmol g(-1). The 2,6-isomer amounted to about two-thirds of the sum concentration of TDA isomers. MDI-derived adducts were detected in 3.5% of plasma and in 7% of globin samples from exposed workers manufacturing rigid polyurethane foam. A good correlation was found between the sum of TDA isomers in urine and that in plasma. The relationship between globin adducts and urinary metabolites was ambiguous. Monitoring TDI-derived TDA in plasma thus appears to be an appropriate method for assessing occupational exposure. Contrary to TDI exposure, adducts in plasma or globin were not useful in assessing workers' exposure to MDI. An important outcome of the study was that no amine-related adducts were detected in globin samples from TDI- or MDI-exposed workers, alleviating concerns that TDI or MDI might pose a carcinogenic hazard. Further studies are nevertheless required to judge whether diisocyanates per se could be such a hazard.  相似文献   
20.
Models were developed for predicting the decomposition of dead wood for the main tree species in Finland, based on data collected from long-term thinning experiments in southern and central Finland. The decomposition rates were strongly related to the number of years after tree death. In contrast to previous studies, which have used the first-order exponential model, we found that the decomposition rate was not constant. Therefore, the Gompertz and Chapman-Richard's functions were fitted to the data. The slow initial decomposition period was mainly due to the fact that most dead trees remained standing as snags after their death. The initial period was followed by a period of rapid decomposition and, finally, by a period of moderately slow decomposition. Birch stems decomposed more rapidly than Scots pine and Norway spruce stems. Decomposition rates of Norway spruce stems were somewhat lower than those of Scots pine. Because the carbon concentration of decaying boles was relatively stable (about 50%) the rate of carbon loss follows that of mass loss. Models were also developed for the probability that a dead tree remains standing as a snag. During the first years after death, the probability was high. Thereafter, it decreased rapidly, the decrease being faster for birch stems than for Scots pine and Norway spruce stems. Almost all stems had fallen down within 40 years after their death. In Scots pine and Norway spruce, most snags remained hard and belonged to decay class 1. In birch, a higher proportion of snags belonged to the more advanced decay classes. The models provide a framework for predicting dead wood dynamics in managed as well as dense unthinned stands. The models can be incorporated into forest management planning systems, thereby facilitating estimates of carbon dynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号