首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   4篇
  国内免费   3篇
安全科学   7篇
废物处理   20篇
环保管理   16篇
综合类   12篇
基础理论   32篇
环境理论   1篇
污染及防治   45篇
评价与监测   38篇
社会与环境   26篇
灾害及防治   1篇
  2023年   4篇
  2022年   23篇
  2021年   24篇
  2020年   5篇
  2019年   6篇
  2018年   12篇
  2017年   12篇
  2016年   19篇
  2015年   14篇
  2014年   7篇
  2013年   28篇
  2012年   11篇
  2011年   10篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有198条查询结果,搜索用时 46 毫秒
141.
Underground coal gasification (UCG) has been identified as an environmentally friendly technique for gasification of deep un-mineable coal seams in situ. This technology has the potential to be a clean and promising energy provider from coal seams with minimal greenhouse gas emission. The UCG eliminates the presence of coal miners underground hence, it is believed to be a much safer technique compared to the deep coal mining method. The UCG includes drilling injection and production wells into the coal seam, igniting coal, and injecting oxygen-based mix to facilitate coal gasification. Produced syngas is extracted from the production well. Evolution of a cavity created from the gasification process along with high temperature as well as change in pore fluid pressure causes mechanical changes to the coal and surrounding formations. Therefore, simulation of the gasification process alone is not sufficient to represent this complex thermal-hydro-chemical–mechanical process. Instead, a coupled flow and geomechanical modeling can help better represent the process by allowing simultaneous observation of the syngas production, advancement of the gasification chamber, and the cavity growth. Adaptation of such a coupled simulation would aid in optimization of the UCG process while helping controlling and mitigating the environmental risks caused by geomechanical failure and syngas loss to the groundwater. This paper presents results of a sequentially coupled flow-geomechanical simulation of a three-dimensional (3D) UCG example using the numerical methodology devised in this study. The 3D model includes caprock on top, coal seam in the middle, and another layer of rock underneath. Gasification modeling was conducted in the Computer Modelling Group Ltd. (CMG)’s Steam, Thermal, and Advanced processes Reservoir Simulator (STARS). Temperature and fluid pressure of each grid block as well as the cavity geometry, at the timestep level, were passed from the STARS to the geomechanical simulator i.e. the Fast Lagrangian Analysis of Continua in 3 Dimensions (FLAC3D) computer program (from the Itasca Consulting Group Inc.). Key features of the UCG process which were investigated herein include syngas flow rate, cavity growth, temperature and pressure profiles, porosity and permeability changes, and stress and deformation in coal and rock layers. It was observed that the coal matrix deformed towards the cavity, displacement and additional stress happened, and some blocks in the coal and rock layers mechanically failed.  相似文献   
142.
143.
Turbulent velocity profile in fully-developed open channel flows   总被引:2,自引:0,他引:2  
The determination of velocity profile in turbulent narrow open channels is a difficult task due to the significant effects of the anisotropic turbulence that involve the Prandtl’s second type of secondary flow occurring in the cross section. With these currents the maximum velocity appears below the free surface that is called dip phenomenon. The well-known logarithmic law describes the velocity distribution in the inner region of the turbulent boundary layer but it is not adapted to define the velocity profile in the outer region of narrow channels. This paper relies on an analysis of the Navier–Stokes equations and yields a new formulation of the vertical velocity profile in the center region of steady, fully developed turbulent flows in open channels. This formulation is able to predict time averaged primary velocity in the outer region of the turbulent boundary layer for both narrow and wide open channels. The proposed law is based on the knowledge of the aspect ratio and involves a parameter CAr depending on the position of the maximum velocity (ξdip). ξdip may be derived, either from measurements or from an empirical equation given in this paper. A wide range of longitudinal velocity profile data for narrow open channels has been used for validating the model. The agreement between the measured and the computed velocities is rather good, despite the simplification used.  相似文献   
144.
Cesium and mercury are two mono-valent elements which can be found in toxic industrial, medical, and nuclear wastes. Their presence in the environment has deleterious effects on the ecosystem, living organisms including humans. Due to the chemical nature of these metals, bioremediation by conventional methods is more difficult to achieve compared to other metals. In this study, we used three biosorbents (oak powder, gall nut, and bacterial exopolymer) for the bioremediation of Hg and Cs. Bio-polymer was produced in the GMS mineral broth. Synthetic wastes of Hg(NO3)2 and isotope Cs-133 as the single-metal solutions were used. The biorefining process was carried out in glass columns, made of Pyrex, with dimensions 20?×?7/2?cm2 with a V-shaped bottom. The samples were analyzed using atomic absorption. The experimental results showed that eliminated metal percent by oak powder, gall nut, and bacterial exopolymer were, respectively, of 94.8%, 96%, and 13.8% for Hg and 7.8%, 4.4%, and 69.4% for Cs. The tests revealed that Ca++, when used as flocculant, played a key role in both biosorption and bio-precipitation rates. Consequently, it was concluded that the investigated biosorbents could be use as an integrated biosorption system for the refinement of mixed wastes.  相似文献   
145.
In this investigation, Fe3O4 magnetic nanoparticles (MNPs) were prepared by the alkalinization of an aqueous medium containing ferrous sulfate and ferric chloride. In the next step, a Fe3O4–AgCl magnetic nanocomposite was fabricated by the drop-by-drop addition of silver nitrate solution into a NaCl solution containing Fe3O4 MNPs. All prepared nanoparticles were characterized by transition electron microscopy (TEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). Both particle types varied in size from 2.5 to 20?nm, with an average size of 7.5?nm for Fe3O4 MNPs and 12.5?nm for Fe3O4–AgCl nanocomposites. The antibacterial effect of the Fe3O4 MNPs and fabricated Fe3O4–AgCl nanocomposites against Escherichia coli (ATCC 35218) were investigated by conventional serial agar dilution method using the Müller–Hinton Agar medium. The minimum inhibitory concentration was 4?mg?mL?1 for Fe3O4 MNPs and 2?mg?mL?1 for the Fe3O4–AgCl magnetic nanocomposites. Time-kill course assays showed that the Fe3O4–AgCl magnetic nanocomposites successfully killed all inoculated bacterial cells during an exposure time of 60?min. The antibacterial activity of recycled Fe3O4–AgCl magnetic nanocomposites over four 60?min cycles of antibacterial treatment was further tested against E. coli by the colony-forming unit (CFU) method. The antibacterial efficiency of the nanocomposites was constant over two cycles of antibacterial testing.  相似文献   
146.
Jajroud Protected Area Complex is one of the main habitats of Alborz Red Sheep (Ovis gmelini × O. vignei) in Iran. Being close to Tehran, this habitat has been reduced and fragmented due to the human constructions. This study was designed with the aim of identifying the summer and fall habitat patches and the suitability of the matrix by means of Ecological Niche Factor Analysis (ENFA). Cost-distance function was then used to calculate the cost of moving among the patches and the corridors with the least cost was identified using Least-cost path analysis. Results showed that, in both seasons, the species inhabits a narrow niche and is very sensitive to habitat changes. Overall, a suitable habitat for this species is at an elevation of more than 1535 m, with a lower average temperature than average of the habitat, with suitable escape terrain, and away from villages. Military areas, based on their specific use, can have different effects on the habitat suitability. This species selects corridors which are close to escape terrain, with a slope of about 15 percent and low slope fluctuation.  相似文献   
147.
A non-aqueous phase liquid (NAPL) containing dissolved naphthalene or phenol was used to simulate water insoluble contaminants which are produced during the processing of oil sands. Mass transfer and biodegradation of organic contaminants in the aqueous phase were studied in a baffled roller bioreactor. Mass transfer of both naphthalene and phenol from NAPL into the aqueous phase was completed in less than 60 min, by which time naphthalene reached its saturation concentration in the aqueous phase and phenol was completely transferred into the aqueous phase. Pseudomonas putida (ATCC 17484) was subsequently used in biodegradation experiments in the baffled bioreactor containing the model NAPL contaminant. The optimum loading of NAPL for biodegradation of naphthalene at 500 mg/L was found to be 40%. High biodegradation rates (136.4 mg/L h for naphthalene and 13.2 mg/L h for phenol based on the working volume of the bioreactor) were achieved. In the case of simultaneous biodegradation of naphthalene and phenol, the highest total biodegradation rate of 102.6 mg/L h was achieved.  相似文献   
148.
Environment, Development and Sustainability - Spatial simulation of land-use change scenarios in metropolitan areas is essential for analyzing both the causes and consequences of various future...  相似文献   
149.
150.
Because of the recent frequent observations of major dust storms in southwestern cities in Iran such as Ahvaz, and the importance of the ionic composition of particulate matters regarding their health effects, source apportionment, etc., the present work was conducted aiming at characterizing the ionic composition of total suspended particles (TSP) and particles on the order of ~10?μm or less (PM(10)) during dust storms in Ahvaz in April-September 2010. TSP and PM(10) samples were collected and their ionic compositions were determined using an ion chromatography. Mean concentrations of TSP and PM(10) were 1,481.5 and 1,072.9?μg/m(3), respectively. Particle concentrations during the Middle Eastern Dust (MED) days were up to four times higher than those in normal days. Ionic components contributed to only 9.5% and 11.3% of the total mass of TSP and PM(10), respectively. Crustal ions were most abundant during dust days, while secondary ions were dominant during non-dust days. Ca(2+)/Na(+) and Cl(-)/Na(+) ratios can be considered as the indicators for identification of the MED occurrence. It was found that possible chemical forms of NaCl, (NH(4))(2)SO(4), KCl, K(2)SO(4), CaCl(2), Ca(NO(3))(2), and CaSO(4) may exist in TSP. Correlation between the anionic and cationic components suggests slight anion and cation deficiencies in TSP and PM(10) samples, though the deficiencies were negligible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号