首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   1篇
安全科学   1篇
环保管理   12篇
综合类   1篇
基础理论   55篇
灾害及防治   3篇
  2019年   1篇
  2014年   3篇
  2013年   5篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   8篇
  2008年   6篇
  2007年   5篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1990年   2篇
  1989年   4篇
  1988年   3篇
  1980年   1篇
  1977年   1篇
排序方式: 共有72条查询结果,搜索用时 390 毫秒
31.
32.
Status Assessment of Biodiversity Protection   总被引:1,自引:0,他引:1  
  相似文献   
33.
Persistence of Forest Birds in the Costa Rican Agricultural Countryside   总被引:8,自引:1,他引:8  
Abstract:  Understanding the persistence mechanisms of tropical forest species in human-dominated landscapes is a fundamental challenge of tropical ecology and conservation. Many species, including more than half of Costa Rica's native land birds, use mostly deforested agricultural countryside, but how they do so is poorly known. Do they commute regularly to forest or can some species survive in this human-dominated landscape year-round? Using radiotelemetry, we detailed the habitat use, movement, foraging, and nesting patterns of three bird species, Catharus aurantiirostris , Tangara icterocephala , and Turdus assimilis , by obtaining 8101 locations from 156 individuals. We chose forest birds that varied in their vulnerability to deforestation and were representative of the species found both in forest and human-dominated landscapes. Our study species did not commute from extensive forest; rather, they fed and bred in the agricultural countryside. Nevertheless, T. icterocephala and T. assimilis , which are more habitat sensitive, were highly dependent on the remaining trees. Although trees constituted only 11% of land cover, these birds spent 69% to 85% of their time in them. Breeding success of C. aurantiirostris and T. icterocephala in deforested habitats was not different than in forest remnants, where T. assimilis experienced reduced breeding success. Although this suggests an ecological trap for T. assimilis , higher fledgling survival in forest remnants may make up for lower productivity. Tropical countryside has high potential conservation value, which can be enhanced with even modest increases in tree cover. Our findings have applicability to many human-dominated tropical areas that have the potential to conserve substantial biodiversity if appropriate restoration measures are taken.  相似文献   
34.
Introduced Birds and the Fate of Hawaiian Rainforests   总被引:3,自引:0,他引:3  
Abstract:  The Hawaiian Islands have lost nearly all their native seed dispersers, but have gained many frugivorous birds and fleshy-fruited plants through introductions. Introduced birds may not only aid invasions of exotic plants but also may be the sole dispersers of native plants. We assessed seed dispersal at the ecotone between native- and exotic-dominated forests and quantified bird diets, seed rain from defecated seeds, and plant distributions. Introduced birds were the primary dispersers of native seeds into exotic-dominated forests, which may have enabled six native understory plant species to become reestablished. Some native plant species are now as common in exotic forest understory as they are in native forest. Introduced birds also dispersed seeds of two exotic plants into native forest, but dispersal was localized or establishment minimal. Seed rain of bird-dispersed seeds was extensive in both forests, totaling 724 seeds of 9 native species and 2 exotics with over 85% of the seeds coming from native plants. Without suitable native dispersers, most common understory plants in Hawaiian rainforests now depend on introduced birds for dispersal, and these introduced species may actually facilitate perpetuation, and perhaps in some cases restoration, of native forests. We emphasize, however, that restoration of native forests by seed dispersal from introduced birds, as seen in this study, depends on the existence of native forests to provide a source of seeds and protection from the effects of ungulates. Our results further suggest that aggressive control of patches of non-native plants within otherwise native-dominated forests may be an important and effective conservation strategy.  相似文献   
35.
Conspecific Attraction and the Conservation of Territorial Songbirds   总被引:4,自引:0,他引:4  
Abstract:  Conspecific attraction, the tendency for individuals of a species to settle near one another, is well described in colonial species, especially birds. Although this behavior may occur in territorial birds, evidence has been lacking. If territorial birds do exhibit this behavior, it would have major conservation implications. Birds could potentially be attracted to specific sites with artificial stimuli, making conservation of those species more efficient. In 2001 and 2002, we tested whether conspecific attraction occurs in an endangered, territorial songbird, the Black-capped Vireo ( Vireo atricapilla ) by playing vireo vocalizations in unoccupied habitats at Fort Hood, Texas. We were successful in attracting 73 birds to five experimental sites in 2001 and 75 birds to seven experimental sites in 2002. No birds settled on comparable control sites. Many birds attracted to the vocalizations paired and bred. At most research sites the primary threat to the species, the brood-parasitic Brown-headed Cowbird ( Molothrus ater ), was controlled, allowing vireos to achieve high nesting success relative to a nearby, unmanipulated population. Second-year birds were more responsive to conspecific vocalizations than older birds, as they were more common on experimental sites than in the established population. In 2002 birds recolonized experimental sites from 2001 where vocalizations were not played in 2002, indicating that 1 year of playbacks may be sufficient to establish a population. Our results provide the first experimental evidence that territorial songbirds use the presence of conspecifics when deciding where to settle and suggest that conspecific attraction may provide a valuable conservation tool.  相似文献   
36.
Abstract: The number of individuals translocated and released as part of a reintroduction is often small, as is the final established population, because the reintroduction site is typically small. Small founder and small resulting populations can result in population bottlenecks, which are associated with increased rates of inbreeding and loss of genetic diversity, both of which can affect the long‐term viability of reintroduced populations. I used information derived from pedigrees of four monogamous bird species reintroduced onto two different islands (220 and 259 ha) in New Zealand to compare the pattern of inbreeding and loss of genetic diversity among the reintroduced populations. Although reintroduced populations founded with few individuals had higher levels of inbreeding, as predicted, other factors, including biased sex ratio and skewed breeding success, contributed to high levels of inbreeding and loss of genetic diversity. Of the 10–58 individuals released, 4–25 genetic founders contributed at least one living descendent and yielded approximately 3–11 founder–genome equivalents (number of genetic founders assuming an equal contribution of offspring and no random loss of alleles across generations) after seven breeding seasons. This range is much lower than the 20 founder–genome equivalents recommended for captive‐bred populations. Although the level of inbreeding in one reintroduced population initially reached three times that of a closely related species, the long‐term estimated rate of inbreeding of this one population was approximately one‐third that of the other species due to differences in carrying capacities of the respective reintroduction sites. The increasing number of reintroductions to suitable areas that are smaller than those I examined here suggests that it might be useful to develop long‐term strategies and guidelines for reintroduction programs, which would minimize inbreeding and maintain genetic diversity.  相似文献   
37.
Abstract: European earthworms (Lumbricus spp.) are spreading into previously earthworm‐free forests in the United States and Canada and causing substantial changes, including homogenization of soil structure, removal of the litter layer, and reduction in arthropod abundance and species richness of understory plants. Whether these changes affect songbirds that nest and forage on the forest floor is unknown. In stands with and without earthworms in the Chequamegon‐Nicolet National Forest, Wisconsin (U.S.A.), we surveyed for, monitored nests of, and measured attributes of habitat of Ovenbirds (Seiurus aurocapillus) and Hermit Thrushes (Catharus guttatus), both ground‐dwelling songbirds, and we sampled earthworms at survey points and nests. Bird surveys indicated significantly lower densities of Ovenbirds and Hermit Thrushes in relation to Lumbricus invasions at survey point and stand extents (3.1 and 15–20 ha, respectively). Modeling of Ovenbird nest survival (i.e., the probability that nestlings successfully fledge) indicated that lower survival probabilities were associated with increased sedge cover and decreased litter depth, factors that are related to Lumbricus invasions, possibly due to reduced nest concealment or arthropod abundance. Our findings provide compelling evidence that earthworm invasions may be associated with local declines of forest songbird populations.  相似文献   
38.
Abstract:  Stochastic variation of sex ratio has long been appreciated as a potential factor driving small populations to extinction, but it is not the only source of sex-ratio bias in small populations. We examined whether some consequences of sex allocation could affect extinction risk in small populations of size-dimorphic birds such as eagles. We report variations in sex ratio at fledging from a long-term study of a declining population of Spanish Imperial Eagles ( Aquila adalberti ). Nestling sex-ratio deviation apparently was mediated by age of breeders, whereas territory quality had no obvious effect. Adult–adult pairs produced the same proportion of both sexes in high- or low-density situations, but pairs with at least one member in nonadult plumage class produced more males. As the population declined over a period of years, the proportion of breeders with immature plumage increased; consequently, the proportion of fledgling males increased. However, when population density was high, the proportion of breeders with immature plumage decreased and more female offspring were produced. This relationship between population density, composition of breeder age, and fledgling sex ratios allowed us to make predictions of extinction risk due to nonstochastic deviations of sex ratio in small, declining populations. In the study population, on the basis of the Vortex simulation results, an estimated reduction of 42.5% in predicted mean time to extinction was attributed solely to biased sex ratio.  相似文献   
39.
Assessing the effects of diseases on wildlife populations can be difficult in the absence of observed mortalities, but it is crucial for threat assessment and conservation. We performed an intensive capture‐mark‐recapture study across seasons and years to investigate the effect of chytridiomycosis on demographics in 2 populations of the threatened common mist frog (Litoria rheocola) in the lowland wet tropics of Queensland, Australia. Infection prevalence was the best predictor for apparent survival probability in adult males and varied widely with season (0–65%). Infection prevalence was highest in winter months when monthly survival probabilities were low (approximately 70%). Populations at both sites exhibited very low annual survival probabilities (12–15%) but high recruitment (71–91%), which resulted in population growth rates that fluctuated seasonally. Our results suggest that even in the absence of observed mortalities and continued declines, and despite host–pathogen co‐existence for multiple host generations over almost 2 decades, chytridiomycosis continues to have substantial seasonally fluctuating population‐level effects on amphibian survival, which necessitates increased recruitment for population persistence. Similarly infected populations may thus be under continued threat from chytridiomycosis which may render them vulnerable to other threatening processes, particularly those affecting recruitment success. Quitridiomicosis y Mortalidad Estacional de Ranas Asociadas a Arroyos Tropicales Quince Años Después de la Introducción de Batrachochytrium dendrobatidisvsp  相似文献   
40.
Preserving allelic diversity is important because it provides the capacity for adaptation and thus enables long‐term population viability. Allele retention is difficult to predict in animals with overlapping generations, so we used a new computer model to simulate retention of rare alleles in small populations of 3 species with contrasting life‐history traits: North Island Brown Kiwi (Apteryx mantelli; monogamous, long‐lived), North Island Robins (Petroica longipes; monogamous, short‐lived), and red deer (Cervus elaphus; polygynous, moderate lifespan). We simulated closed populations under various demographic scenarios and assessed the amounts of artificial immigration needed to achieve a goal of retaining 90% of selectively neutral rare alleles (frequency in the source population = 0.05) after 10 generations. The number of immigrants per generation required to meet the genetic goal ranged from 11 to 30, and there were key similarities and differences among species. None of the species met the genetic goal without immigration, and red deer lost the most allelic diversity due to reproductive skew among polygynous males. However, red deer required only a moderate rate of immigration relative to the other species to meet the genetic goal because nonterritorial breeders had a high turnover. Conversely, North Island Brown Kiwi needed the most immigration because the long lifespan of locally produced territorial breeders prevented a large proportion of immigrants from recruiting. In all species, the amount of immigration needed generally decreased with an increase in carrying capacity, survival, or reproductive output and increased as individual variation in reproductive success increased, indicating the importance of accurately quantifying these parameters to predict the effects of management. Overall, retaining rare alleles in a small, isolated population requires substantial investment of management effort. Use of simulations to explore strategies optimized for the populations in question will help maximize the value of this effort. Simulación de la Retención de Alelos Raros en Poblaciones Pequeñas para Evaluar Opciones de Manejo para Especies con Historias de Vida Diferentes  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号