首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   670篇
  免费   0篇
安全科学   22篇
废物处理   23篇
环保管理   83篇
综合类   24篇
基础理论   41篇
污染及防治   368篇
评价与监测   68篇
社会与环境   34篇
灾害及防治   7篇
  2012年   53篇
  2011年   72篇
  2010年   11篇
  2009年   19篇
  2008年   74篇
  2007年   78篇
  2006年   68篇
  2005年   60篇
  2004年   50篇
  2003年   49篇
  2002年   50篇
  2001年   30篇
  2000年   19篇
  1999年   7篇
  1998年   2篇
  1997年   1篇
  1996年   5篇
  1995年   3篇
  1993年   2篇
  1992年   4篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
  1983年   1篇
  1978年   1篇
  1973年   1篇
排序方式: 共有670条查询结果,搜索用时 875 毫秒
321.
Salix fragilis is the most common willow species grown extensively under the indigenous agroforestry system in the cold desert of Lahaul valley located in the northwestern Himalayas, India. Presently, this tree is under severe pest attack, and other infections have made its survival in the area questionable. This deciduous multipurpose tree species provides vegetation cover to the barren landscape of Lahaul and is a significant contributor of fuel and fodder to the region. This study is a detailed profile of the plant in three villages within this region: Khoksar, Jahlma, and Hinsa. The willow provided 69.5%, 29%, and 42% of the total fuelwood requirements of Jahlma, Khoksar, and Hinsa respectively. A striking observation was that only 30.0 +/- 20.1% trees were healthy: 55.2 +/- 16.1% of the willows have dried up and 14.8 +/- 6.1% were in drying condition due to a combination of pest infestation and infection. To sustain this cultivation of willow under the existing agroforestry system in the region, we recommend that locally available wild species and other established varieties of willow growing in similar regions of the Himalayas be introduced on a trial basis.  相似文献   
322.
Thomas JE  Ou LT  Allen LH  Vu JC  Dickson DW 《Chemosphere》2006,62(6):980-988
Methyl bromide, a pre-emergent soil fumigant, is scheduled to be phased out in the US by 2005, with exceptions for critical use. Comparison of some of the physical constants related to distribution and retention for methyl bromide (MBr) to other fumigants yields a useful quantification of possible alternatives. In this study, the atmospheric and subsurface dissipation of methyl bromide as well as (Z)- and (E)-1,3-dichloropropene (1,3-D) isomers in Telone II were examined. The Henry's law constants of the three chemicals at soil temperature and their mass transfer coefficients for movement through an agricultural mulch of UV-resistant, high-density polyethylene (PE) were evaluated using field data. At the soil temperature of 16.4 degrees C, calculated Henry's law constant gave a fumigant ranking of MBr (0.21)>(Z)-1,3-D (0.041)>(E)-1,3-D (0.027). Since rapid subsurface distribution of a fumigant is highly dependent on the amount in the gas phase, the greater value for Henry's law constant implies faster distribution throughout the soil. After distribution through the soil, retention of the fumigant becomes imperative. Calculation of the fumigant's mass transfer coefficients through PE from field data gave a ranking of the three chemicals: MBr (1.08 cm/h)<(E)-1,3-D (3.25 cm/h)<(Z)-1,3-D (4.13 cm/h). With mass transfer coefficients of this magnitude, it was concluded that PE film was an inadequate barrier for retaining these fumigants in an agricultural setting.  相似文献   
323.
Column experiments and model simulations were employed to evaluate the processes involved in multicomponent solute transport in a system with heterogeneous flow. Column experiments were performed with goethite embedded in polyacrylamide gel beads. The gel forms an immobile water region that can be accessed by diffusion. A two-region transport model with diffusion into spheres was combined with a surface complexation model to predict reactive transport in the goethite-gel bead system. Chromate and sulphate breakthrough curves were measured in a set of transport experiments, along with corresponding changes in the pH of the effluent. Sorption and transport of sulphate and chromate in separate columns were predicted from independently measured sorption parameters. The model overestimated the pH changes in the effluent, possibly because of proton buffering by the polyacrylamide gel. The effect of competitive sorption on transport was examined in experiments with both anions present. The model predicted the effect of competition very well in a system initially equilibrated with sulphate, followed by infiltration with chromate. However, when sulphate was infiltrated after equilibration with chromate, chromate desorption and sulphate adsorption were clearly overestimated by the transport model. The exchange between the more strongly bound chromate and the sulphate added subsequently may be too slow to cause a substantial chromate peak in the effluent. This suggests that the local equilibrium assumption was not applicable in this case.  相似文献   
324.
The potential of using phytochemicals from leaves of wild tomato for controlling the two-spotted spider mite, Tetranychus urticae Koch, is explored in this study as a promising alternative to the use of synthetic pesticides. Wild tomato accessions of Lycopersicon hirsutum plants that are not consumed by humans were planted under greenhouse conditions for mass production of leaves. Crude extracts from leaves of three accessions of L. hirsutum, six accessions of L. hirsutum f. glabratum, and one accession each of L. pennellii and L. pimpinellifolium were prepared in chloroform, ethanol and hexane. Two spider mite bioassays, one a measure of antibiosis and the other a measure of repellency, were utilized to determine the acaricidal performance of the crude extracts. The bioassay for antibiosis was a 6-h no-choice test. The bioassay for repellency utilized a ring bioassay. Chloroform leaf extracts of L. hirsutum f. glabratum accessions (PI-251304, PI-134417, PI-134418, and PI-126449) exhibited greatest antibiotic activity on two-spotted spider mites; the hexane extracts exhibited greatest repellency. Extracts from PI-251304, PI-126449, PI-134417, and PI-134418 were especially lethal (chloroform) or repellent (hexane). We investigated differences in chemical composition of the crude leaf extracts that may explain the observed differences in mortality and repellency among the different accessions. Major chemical compounds (alpha -curcumene, alpha -zingiberene, trans-caryophyllene, 2-undecanone, and 2-tridecanone) known to have pesticidal efficacy were detected and quantified in the crude leaf extracts using a gas chromatograph (GC) equipped with a mass spectrometer (GC/MS). Lethality of extracts was mainly associated with the presence of high concentrations of 2-tridecanone; repellency of extracts was mainly associated with the presence of trans-caryophyllene. Leaf extracts of L. hirsutum f. glabratum accessions that contain significant quantities of 2-tridecanone and/or trans-caryophyllene could be useful for managing populations of spider mites, which could reduce reliance on synthetic pesticides.  相似文献   
325.
Results from six continuous and semicontinuous black carbon (BC) and elemental carbon (EC) measurement methods are compared for ambient samples collected from December 2003 through November 2004 at the Fresno Supersite in California. Instruments included a multi-angle absorption photometer (MAAP; lambda = 670 nm); a dual-wavelength (lambda = 370 and 880 nm) aethalometer; seven-color (lambda = 370, 470, 520, 590, 660, 880, and 950 nm) aethalometers; the Sunset Laboratory carbon aerosol analysis field instrument; a photoacoustic light absorption analyzer (lambda = 1047 nm); and the R&P 5400 ambient carbon particulate monitor. All of these acquired BC or EC measurements over periods of 1 min to 1 hr. Twenty-four-hour integrated filter samples were also acquired and analyzed by the Interagency Monitoring of Protected Visual Environments (IMPROVE) thermal/optical reflectance carbon analysis protocol. Site-specific mass absorption efficiencies estimated by comparing light absorption with IMPROVE EC concentrations were 5.5 m2/g for the MAAP, 10 m2/g for the aethalometer at a wavelength of 880 nm, and 2.3 m2/g for the photoacoustic analyzer; these differed from the default efficiencies of 6.5, 16.6, and 5 m2/g, respectively. Scaling absorption by inverse wavelength did not provide equivalent light absorption coefficients among the instruments for the Fresno aerosol measurements. Ratios of light absorption at 370 nm to those at 880 nm from the aethalometer were nearly twice as high in winter as in summer. This is consistent with wintertime contributions from vehicle exhaust and from residential wood combustion, which is believed to absorb more shorter-wavelength light. To reconcile BC and EC measurements obtained by different methods, a better understanding is needed of the wavelength dependence of light-absorption and mass-absorption efficiencies and how they vary with different aerosol composition.  相似文献   
326.
Continuous measurements of particle size distributions of 3-407 nm were collected from August 2002 to July 2004 at the Fresno Supersite to understand their number concentrations, size distributions, and formation processes. Measurements for fine particulate matter (PM2.5) mass, sulfate (SO4(2-)), nitrate (NO3-), black carbon (BC), particle-bound polycyclic aromatic hydrocarbons (PAHs), nitrogen oxides (NOx), carbon monoxide (CO), ozone (O3), and meteorological data (wind speed, wind direction, temperature [T], relative humidity [RH], and solar radiation) were used to determine the causes of nanoparticle (3-10 nm) and ultrafine (10-100 nm) particle events. These events were found to be divided into four types: (1) 3- to 10-nm morning nucleation; (2) 10- to 30-nm morning traffic; (3) 10- to 30-nm afternoon photochemical; and (4) 50- to 84-nm evening home heating, including residential wood combustion. Intense examples of the first type (>10(4) number [#]/cm3) were observed on 29 days, nearly always during the summer. The second type of event was observed on more than 73 days and occurred throughout the year. The third type was observed on 36 days, from spring through summer. The fourth type was found on 109 days, all of them during the winter. Although sulfur dioxide (SO2) emissions in Central California are low, the small residual amounts in gasoline and diesel fuel are apparently sufficient to initiate nucleation events. These were measured in the morning, soon after the shallow surface inversion coupled with layers aloft where nucleation probably was initiated. PM2.5 concentrations were poorly correlated with nanoparticle number.  相似文献   
327.
The presence of Escherichia coli in recreational and potable waters is a major concern to the general public as elevated levels of E. coli suggest the presence of pathogenic bacteria and viruses. Unfortunately, traditional microbial techniques do not allow specific identification of the source of E. coli. This reduces the ability to target management practices that reduce bacterial contamination. In the Finger Lakes region of western New York, USA, wildlife resides in relatively high densities on watersheds dominated by people and dairy farms, and as a result, the sources of fecal degradation of potable and recreational waters are often unknown. In the Conesus Lake watershed, the sources of microbial contamination were assessed using Rep-PCR molecular tools, a method of amplifying repetitive DNA sequences found throughout the E. coli genome to produce distinct fingerprints for a given ecotype. Molecular fingerprints of E. coli isolated from regional populations of cattle, humans, geese and deer were compared to E. coli isolated from stream water samples. Canonical discriminant function analysis indicated that the DNA fingerprints of the original source group isolates were correctly predicted 90.2% of the time. Since land use in the sub-watersheds was dominated by dairy and cash crop farms, it was expected that the majority of E. coli isolated would be identified as cows; however, an unexpectedly high percentage of isolates were identified as wildlife (geese and deer). Geese were the dominant source of E. coli (44.7-73.7% of the total sources) in four sub-watersheds followed by cows (10.5-21.1%), deer (10.5-18.4%), humans (5.3-12.9%) and unidentifiable sources (0.0-11.8%). Management practices intended to decrease the number of cattle or the amount of manure spread in a sub-watershed were reflected in a decrease of E. coli ecotypes associated with dairy cows.  相似文献   
328.
Eutrophication of surface waters due to nonpoint source pollution from urban environments has raised awareness of the need to decrease runoff from roads and other impervious surfaces. These concerns have led to precautionary P application restrictions on turf and requirements for vegetative buffer strips. The impacts of two plant communities and three impervious/pervious surface ratios were assessed on runoff water quality and quantity. A mixed forb/grass prairie and a Kentucky bluegrass (Poa pratensis L.) blend were seeded and runoff was monitored and analyzed for total volume, total P, soluble P, soluble organic P, bioavailable P, total suspended solids, and total organic suspended solids. Mean annual runoff volumes, all types of mean annual P nutrient losses, and sediment loads were not significantly affected by treatments because over 80% of runoff occurred during frozen soil conditions. Total P losses from prairie and turf were similar, averaging 1.96 and 2.12 kg ha(-1) yr(-1), respectively. Vegetation appeared to be a likely contributor of nutrients, particularly from prairie during winter dormancy. When runoff occurred during non-frozen soil conditions turf allowed significantly (P < or = 0.10) lower runoff volumes compared with prairie vegetation and the 1:2 and 1:4 impervious/pervious surface ratios had less runoff than the 1:1 ratio (P < or = 0.05). In climates where the majority of runoff occurs during frozen ground conditions, vegetative buffers strips alone are unlikely to dramatically reduce runoff and nutrient loading into surface waters. Regardless of vegetation type or size, natural nutrient biogeochemical cycling will cause nutrient loss in surface runoff waters, and these values may represent baseline thresholds below which values cannot be obtained.  相似文献   
329.
Turf, including home lawns, roadsides, golf courses, parks, etc., is often the most intensively managed land use in the urban landscape. Substantial inputs of fertilizers and water to maintain turf systems have led to a perception that turf systems are a major contributor to nonpoint source water pollution. The primary objective of this study was to quantify nutrient (NO(3)-N, NH(4)-N, and PO(4)-P) transport in storm-generated surface runoff from a golf course. Storm event samples were collected for 5 yr (1 Apr. 1998-31 Mar. 2003) from the Morris Williams Municipal Golf Course in Austin, TX. Inflow and outflow samples were collected from a stream that transected the golf course. One hundred fifteen runoff-producing precipitation events were measured. Median NO(3)-N and PO(4)-P concentrations at the outflow location were significantly (p < 0.05) greater than like concentrations measured at the inflow location; however, median outflow NH(4)-N concentration was significantly less than the median inflow concentration. Storm water runoff transported 1.2 kg NO(3)-N ha(-1) yr(-1), 0.23 kg NH(4)-N ha(-1) yr(-1), and 0.51 kg PO(4)-P ha(-1) yr(-1) from the course. These amounts represent approximately 3.3% of applied N and 6.2% of applied P over the contributing area for the same period. NO(3)-N transport in storm water runoff from this course does not pose a substantial environmental risk; however, the median PO(4)-P concentration exiting the course exceeded the USEPA recommendation of 0.1 mg L(-1) for streams not discharging into lakes. The PO(4)-P load measured in this study was comparable to soluble P rates measured from agricultural lands. The findings of this study emphasize the need to balance golf course fertility management with environmental risks, especially with respect to phosphorus.  相似文献   
330.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号