全文获取类型
收费全文 | 20589篇 |
免费 | 234篇 |
国内免费 | 121篇 |
专业分类
安全科学 | 520篇 |
废物处理 | 888篇 |
环保管理 | 2758篇 |
综合类 | 3383篇 |
基础理论 | 5813篇 |
环境理论 | 10篇 |
污染及防治 | 5304篇 |
评价与监测 | 1278篇 |
社会与环境 | 858篇 |
灾害及防治 | 132篇 |
出版年
2021年 | 136篇 |
2019年 | 127篇 |
2018年 | 234篇 |
2017年 | 251篇 |
2016年 | 401篇 |
2015年 | 306篇 |
2014年 | 467篇 |
2013年 | 1598篇 |
2012年 | 573篇 |
2011年 | 815篇 |
2010年 | 666篇 |
2009年 | 661篇 |
2008年 | 829篇 |
2007年 | 863篇 |
2006年 | 765篇 |
2005年 | 662篇 |
2004年 | 647篇 |
2003年 | 628篇 |
2002年 | 609篇 |
2001年 | 763篇 |
2000年 | 574篇 |
1999年 | 325篇 |
1998年 | 261篇 |
1997年 | 278篇 |
1996年 | 279篇 |
1995年 | 331篇 |
1994年 | 302篇 |
1993年 | 284篇 |
1992年 | 277篇 |
1991年 | 278篇 |
1990年 | 294篇 |
1989年 | 277篇 |
1988年 | 249篇 |
1987年 | 240篇 |
1986年 | 222篇 |
1985年 | 200篇 |
1984年 | 255篇 |
1983年 | 210篇 |
1982年 | 271篇 |
1981年 | 219篇 |
1980年 | 184篇 |
1979年 | 201篇 |
1978年 | 184篇 |
1977年 | 153篇 |
1976年 | 138篇 |
1975年 | 143篇 |
1974年 | 159篇 |
1973年 | 162篇 |
1972年 | 148篇 |
1971年 | 146篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Recreational Diving Impacts on Coral Reefs and the Adoption of Environmentally Responsible Practices within the SCUBA Diving Industry 总被引:1,自引:0,他引:1
962.
963.
964.
The ecosystem services (ES) concept is being increasingly incorporated into environmental policy formulation and management approaches. The Corporate Ecosystem Services Review (ESR) is a framework used to assess the dependence and impact that a business has on ES. The success of the corporate experience of ES assessment provides an opportunity for adaption for local authority decision making. In this paper, the ESR tool was adapted to the South African setting at a local government level, and tested at two sites in the Msunduzi Municipality, KwaZulu-Natal. In testing the tool and gathering feedback from key stakeholders, it was found that there are both opportunities and challenges to this approach. Overall, however, it provides an opportunity for the systematic inclusion of ES assessment into existing regulatory frameworks for land-use planning and Integrated Environmental Management, whether in a strategic application, at a broader spatial (municipal) scale or in a specific locale within the municipality. 相似文献
965.
Benchmarking Optical/Thermal Satellite Imagery for Estimating Evapotranspiration and Soil Moisture in Decision Support Tools 下载免费PDF全文
Jan M.H. Hendrickx Richard G. Allen Al Brower Aaron R. Byrd Sung‐ho Hong Fred L. Ogden Nawa Raj Pradhan Clarence W. Robison David Toll Ricardo Trezza Todd G. Umstot John L. Wilson 《Journal of the American Water Resources Association》2016,52(1):89-119
Generally, one expects evapotranspiration (ET) maps derived from optical/thermal Landsat and MODIS satellite imagery to improve decision support tools and lead to superior decisions regarding water resources management. However, there is lack of supportive evidence to accept or reject this expectation. We “benchmark” three existing hydrologic decision support tools with the following benchmarks: annual ET for the ET Toolbox developed by the United States Bureau of Reclamation, predicted rainfall‐runoff hydrographs for the Gridded Surface/Subsurface Hydrologic Analysis model developed by the U.S. Army Corps of Engineers, and the average annual groundwater recharge for the Distributed Parameter Watershed Model used by Daniel B. Stephens & Associates. The conclusion of this benchmark study is that the use of NASA/USGS optical/thermal satellite imagery can considerably improve hydrologic decision support tools compared to their traditional implementations. The benefits of improved decision making, resulting from more accurate results of hydrologic support systems using optical/thermal satellite imagery, should substantially exceed the costs for acquiring such imagery and implementing the remote sensing algorithms. In fact, the value of reduced error in estimating average annual groundwater recharge in the San Gabriel Mountains, California alone, in terms of value of water, may be as large as $1 billion, more than sufficient to pay for one new Landsat satellite. 相似文献
966.
Poulomi Ganguli Auroop R. Ganguly 《Journal of the American Water Resources Association》2016,52(1):138-167
We examine the robustness of a suite of regional climate models (RCMs) in simulating meteorological droughts and associated metrics in present‐day climate (1971‐2003) over the conterminous United States (U.S.). The RCMs that are part of North American Regional Climate Change Assessment Program (NARCCAP) simulations are compared with multiple observations over the climatologically homogeneous regions of the U.S. The seasonal precipitation, climatology, drought attributes, and trends have been assessed. The reanalysis‐based multi‐model median RCM reasonably simulates observed statistical attributes of drought and the regional detail due to topographic forcing. However, models fail to simulate significant drying trend over the Southwest and West. Further, reanalysis‐based NARCCAP runs underestimate the observed drought frequency overall, with the exception of the Southwest; whereas they underestimate persistence in the drought‐affected areas over the Southwest and West‐North Central regions. However, global climate model‐driven NARCCAP ensembles tend to overestimate regional drought frequencies. Models exhibit considerable uncertainties while reproducing meteorological drought statistics, as evidenced by a general lack of agreement in the Hurst exponent, which in turn controls drought persistence. Water resources managers need to be aware of the limitations of current climate models, while regional climate modelers may want to fine‐tune their parameters to address impact‐relevant metrics. 相似文献
967.
Emerging Tools for Continuous Nutrient Monitoring Networks: Sensors Advancing Science and Water Resources Protection 下载免费PDF全文
Brian A. Pellerin Beth A. Stauffer Dwane A. Young Daniel J. Sullivan Suzanne B. Bricker Mark R. Walbridge Gerard A. Clyde Jr. Denice M. Shaw 《Journal of the American Water Resources Association》2016,52(4):993-1008
Sensors and enabling technologies are becoming increasingly important tools for water quality monitoring and associated water resource management decisions. In particular, nutrient sensors are of interest because of the well‐known adverse effects of nutrient enrichment on coastal hypoxia, harmful algal blooms, and impacts to human health. Accurate and timely information on nutrient concentrations and loads is integral to strategies designed to minimize risk to humans and manage the underlying drivers of water quality impairment. Using nitrate sensors as the primary example, we highlight the types of applications in freshwater and coastal environments that are likely to benefit from continuous, real‐time nutrient data. The concurrent emergence of new tools to integrate, manage, and share large datasets is critical to the successful use of nutrient sensors and has made it possible for the field of continuous monitoring to rapidly move forward. We highlight several near‐term opportunities for federal agencies, as well as the broader scientific and management community, that will help accelerate sensor development, build and leverage sites within a national network, and develop open data standards and data management protocols that are key to realizing the benefits of a large‐scale, integrated monitoring network. Investing in these opportunities will provide new information to guide management and policies designed to protect and restore our nation's water resources. 相似文献
968.
Augmenting Watershed Model Calibration with Incorporation of Ancillary Data Sources and Qualitative Soft Data Sources 下载免费PDF全文
Haw Yen Michael J. White James C. Ascough II Douglas R. Smith Jeffrey G. Arnold 《Journal of the American Water Resources Association》2016,52(3):788-798
Watershed simulation models such as the Soil & Water Assessment Tool (SWAT) can be calibrated using “hard data” such as temporal streamflow observations; however, users may find upon examination of model outputs, that the calibrated models may not reflect actual watershed behavior. Thus, it is often advantageous to use “soft data” (i.e., qualitative knowledge such as expected denitrification rates that observed time series do not typically exist) to ensure that the calibrated model is representative of the real world. The primary objective of this study is to evaluate the efficacy of coupling SWAT‐Check (a post‐evaluation framework for SWAT outputs) and IPEAT‐SD (Integrated Parameter Estimation and Uncertainty Analysis Tool‐Soft & hard Data evaluation) to constrain the bounds of soft data during SWAT auto‐calibration. IPEAT‐SD integrates 59 soft data variables to ensure SWAT does not violate physical processes known to occur in watersheds. IPEAT‐SD was evaluated for two case studies where soft data such as denitrification rate, nitrate attributed from subsurface flow to total discharge ratio, and total sediment loading were used to conduct model calibration. Results indicated that SWAT model outputs may not satisfy reasonable soft data responses without providing pre‐defined bounds. IPEAT‐SD provides an efficient and rigorous framework for users to conduct future studies while considering both soft data and traditional hard information measures in watershed modeling. 相似文献
969.
Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations and Biological Condition 下载免费PDF全文
Heather E. Golden Charles R. Lane Amy G. Prues Ellen D'Amico 《Journal of the American Water Resources Association》2016,52(5):1251-1274
Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base‐flow conditions. Factors that affect instream biological components, based on the Index of Biotic Integrity (IBI), were also analyzed. Seasonal BRT models at two spatial scales (watershed and riparian buffered area [RBA]) for nitrite‐nitrate (NO2‐NO3), total Kjeldahl nitrogen, and total phosphorus (TP) and annual models for the IBI score were developed. Two primary factors — location within the watershed (i.e., geographic position, stream order, and distance to a downstream confluence) and percentage of urban land cover (both scales) — emerged as important predictor variables. Latitude and longitude interacted with other factors to explain the variability in summer NO2‐NO3 concentrations and IBI scores. BRT results also suggested that location might be associated with indicators of sources (e.g., land cover), runoff potential (e.g., soil and topographic factors), and processes not easily represented by spatial data indicators. Runoff indicators (e.g., Hydrological Soil Group D and Topographic Wetness Indices) explained a substantial portion of the variability in nutrient concentrations as did point sources for TP in the summer months. The results from our BRT approach can help prioritize areas for nutrient management in mixed‐use and heavily impacted watersheds. 相似文献
970.
Applying Statistical Causal Analyses to Agricultural Conservation: A Case Study Examining P Loss Impacts 下载免费PDF全文
Song S. Qian R. Daren Harmel 《Journal of the American Water Resources Association》2016,52(1):198-208
Estimating the effect of agricultural conservation practices on reducing nutrient loss using observational data can be confounded by factors such as differing crop types and management practices. As we may not have the full knowledge of these confounding factors, conventional statistical meta‐analysis methods can be misleading. We discuss the use of two statistical causal analysis methods for quantifying the effects of water and soil conservation practices in reducing P loss from agricultural fields. With the propensity score method, a subset of data was used to form a treatment group and a control group with similar distributions of confounding factors. With the multilevel modeling method, data were stratified based on important confounding factors, and the conservation practice effect was evaluated for each stratum. Both methods resulted in similar estimates of the conservation practice effect (total P load reduction avg. ~70%). In addition, both methods show evidence of conservation practices reducing the incremental increase in total P export per unit increase in fertilizer application. These results are presented as examples of the types of outcomes provided by statistical causal analyses, not to provide definitive estimates of P loss reduction. The enhanced meta‐analysis methods presented within are applicable for improved assessment of agricultural practices and their effects and can be used for providing realistic parameter values for watershed‐scale modeling. 相似文献